
11316 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 11, NOVEMBER 2024

Video Visualization and Visual Analytics:
A Task-Based and Application-
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Abstract— Video data refers to digital information in the form
of a series of frames or images representing continuous motion
captured by a video recording device. In various domains such
as security, sports, education, and entertainment, a significant
amount of video data is generated and stored daily. However,
analyzing these videos manually is challenging due to their intrin-
sic characteristics, including large-scale, redundancy, contextual
dependencies, and multimodality. Consequently, researchers have
extensively explored visualization techniques to address these
complexities. In this investigation, we review the state-of-the-art
techniques in video visualization and visual analysis. Initially,
we provide an overview of the design space for video visualization
and visual analysis techniques. Subsequently, we organize and
classify these techniques based on visual analysis tasks and
application scenarios, providing detailed descriptions within each
category. Drawing upon a comprehensive review of existing
research, we provide a critical evaluation and propose potential
opportunities for future research. Additionally, we have devel-
oped a web-based survey browser for convenient exploration of
our created classification framework and the associated scholarly
articles (https://zjutvis.github.io/VOVideo/).

Index Terms— Video visualization, video analysis, visual ana-
lytics, video data, survey.

I. INTRODUCTION

THE exponential expansion of video data is a direct
consequence of the rapid advancements in digital tech-

nology. Various domains, encompassing security [1], [2], [3],
sports [4], [5], [6], education [7], [8], [9], and entertain-
ment [10], [11], bear witness to the generation and storage of
substantial volumes of video data daily. Consequently, there
is an urgent demand for browsing, exploring, and analyzing
video data in real world.

Manuscript received 26 June 2023; revised 18 December 2023 and 26 March
2024; accepted 28 June 2024. Date of publication 4 July 2024; date of current
version 27 November 2024. This work was supported in part by the National
Natural Science Foundation of China under Grant 62422607, Grant 62036009,
and Grant 62372411; in part by Zhejiang Provincial Natural Science Foun-
dation of China under Grant LR23F020003 and Grant LTGG23F020005; and
in part by the Fundamental Research Funds for the Provincial Universities
of Zhejiang under Grant RF-B2023006. This article was recommended by
Associate Editor C. Yang. (Corresponding author: Guodao Sun.)

The authors are with the College of Computer Science and Tech-
nology, Zhejiang University of Technology, Hangzhou 310023, China
(e-mail: xiawang@zjut.edu.cn; guodao@zjut.edu.cn; litong@zjut.edu.cn;
baofeng.chang@foxmail.com; jwtang@zjut.edu.cn; gopherzhang@163.com;
rhliang@zjut.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2024.3423402.

Digital Object Identifier 10.1109/TCSVT.2024.3423402

However, the exploration and analysis of video data
encounter two primary challenges. Firstly, the manual review
of videos is time-consuming and labor-intensive. Secondly,
video data encompasses a wealth of information, encom-
passing multimodal information and contextual association,
thereby presenting challenges for video analysis and explo-
ration [12]. To address the above issues, the field of computer
vision has extensively researched and proposed a plethora of
methods [13], [14]. Particularly in recent years, automated
approaches such as object detection [15], [16], object track-
ing [17], [18], [19], and image segmentation [20], [21], [22]
for video data have significantly enhanced the efficiency and
precision of video analysis. Driven by the automation tech-
niques, video analysis is gradually transitioning from manual
review to machine-based scrutiny [23], [24], [25].

However, directly applying advanced automated methods to
real-world video browsing and analysis encounters limitations
posed by following critical issues: (1) the “black box” nature
of automated algorithms hinders interpretability and trans-
parency in decision-making processes. (2) machine-generated
outcomes are typically presented in a discrete and fragmented
manner, lacking meaningful insights that end-users expect for.
In conclusion, the cognitive bridge between machines and
humans remains incomplete.

To meet the demands of human-centric video browsing and
analysis, visualization technique [4], [26], [27], [28], [29],
[30] assumes the role of a bridge between automated video
processing and human perception. The application of visu-
alization and analysis techniques in video prioritizes human
perception and experience, utilizing machines as supportive
tools to assist users in viewing video data. The primary
objective is to alleviate the analytical burden on video viewers
and enhance their understanding of video information. The
entire process (as depicted in Fig. 1) starts with the raw
video data processing, followed by semantic-level modeling
of the video data which abstracts low-level features into
high-level semantic information. Finally, through the intuitive
visualization of video information and a series of interactive
operations, video visualization and visual analysis can be
achieved.

There have been some surveys summarizing the research on
video visualization and analysis techniques in the visualization
community. Earlier surveys examined the literature on video
visualization and visual analysis techniques [31], [32], [33].
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Fig. 1. A general pipeline of video visualization and visual analysis includes these four aspects: (1) Data scale consists of frame, shot, scene, video.
(2) Automated video analysis. (3) Visualization consists of chart, timeline, scatter, graph, sankey, 3D cube. (4) Interaction consists of filter/query, brushing,
emphasis, scaling.

However, these surveys lack awareness of the latest research
achievements. In recent years, some video visualization-related
surveys have focused on specific analysis tasks [34], [35], [36],
[37], application scenarios [38], [39], [40], [41] or interaction
techniques [42]. There are also papers that cover a broader
range of visualization and visual analysis techniques for both
image and video datasets [28]. For example, Afzal et al. [28]
conducted a review of visualization techniques for images
and videos. Their research primarily focused on exploring the
overlaps and differences between computer vision and visu-
alization. They classified articles from various perspectives,
including visual interaction, visualization, machine learning
methods, data scale, and application domains. During the
analysis of the literature, their classification method involved a
large number of categories, without providing specific descrip-
tions of the roles of visualization and visual analysis within
each category. Compared to this survey, our research focuses
on the analysis of visualization and visual analysis techniques.
In the analysis process, we employ a multilevel approach to
literature analysis, with further subdivisions according to each
major category, to enhance the structure of the investigation
and provide a clear framework. The multilevel classification
framework provides readers with a path from overview to
detail in the field of video visualization. This method not only
help readers understand and locate various video visualization
techniques in this survey, but also conduct comparative analy-
sis between these techniques. Additionally, we discuss in depth
how visualization techniques relate to video data in terms
of data characteristics, research value, research challenges,
and analysis techniques. To the best of our knowledge, there
is no state-of-the-art review dedicated specifically to video
visualization and visual analysis techniques.

In this survey, we categorize, summarize, and compare
state-of-the-art video visualization and visual analysis tech-
niques in multi-dimension, which tend to provide a systematic
review. By collecting, filtering, and analyzing relevant papers,
we initially provide a description of the design space within

the domains of video visualization and visual analysis in
Section III. The content of this part can also be seen as
a terminology introduction. According to this design space,
we develop the description of different research. Subse-
quently, we organize and categorize existing papers from the
perspectives of visual analysis tasks and application scenar-
ios in Section IV and V. Regarding visual analysis tasks,
we specifically discuss existing visual analysis techniques
in different tasks and elaborate on the limitations and open
problems. In the realm of application scenarios, we provide a
detailed description of specific scenarios and the correspond-
ing visualization techniques. Finally, we engage in a discussion
regarding the prominent and challenging research directions.
To facilitate the investigation of our devised taxonomy and
reviewed methodologies, we have developed a web-based
survey browser. In summary, the contributions of this paper
are as follows:

• We collect and summarize 129 typical papers in the
research field of video visualization and visual analysis
to provide a review.

• We propose a taxonomy from the perspective of analysis
tasks and application scenarios on video visualization
and visual analysis to offer readers a comprehensive and
systematic overview.

• We offer a comprehensive and in-depth examination of
the current challenges in this field, and propose potential
opportunities for future research.

• We develop a web-based survey browser (https://
zjutvis.github.io/VOVideo/) to facilitate the exploration of
our taxonomy and associated papers.

II. SURVEY METHODOLOGY AND TAXONOMY

A. Survey Methodology

The objective of this survey is to provide an overview
of the existing techniques of video visualization and visual
analysis. In order to comprehensively review the existing
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Fig. 2. We list the most cited papers each year and the latest paper in each
application. We summarize them based on these four dimensions: data, visual-
ization, interactions, and analysis tasks. Data type: image-based, audio-based,
text-based, sensor-based. Visualization: chart-based, graph-based, time-
line-based, projection-based, glyph-based, sankey-based, 3D-based. Interac-
tions: filter, scaling, emphasis, sketch. Analysis tasks: video summarization,
video content understanding, video anomaly detection, video augmentation,
and video editing. Evaluation: understanding environments and work practices
(UWP), visual data analysis and reasoning (VDAR), user performance (UP),
user experience (UE), and algorithm performance (AP).

papers in this field, we employed two primary literature
retrieval methodologies: search-based and citation-based. The

search-based approach was designed to initiate a preliminary
exploration of video visualization and analysis techniques.
We utilized two queries (“video” AND “visualization”;
“video” AND “analysis”) with the anticipation of covering
all papers related to both video and visualization. Our main
sources of papers were highly influential conferences and
journals (Conferences: IEEE VIS, CVPR, ECCV, ICCV, ACM
CHI, EuroVis, and PacificVis. Journals: IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), IEEE
Transactions on Image Processing (TIP), IEEE Transactions on
Visualization and Computer Graphics (TVCG), IEEE Trans-
actions on Multimedia (TMM), IEEE Computer Graphics and
Applications (CG&A), and Computer Graphics Forum (CGF).)
The citation-based approach starts with the core techniques in
this field and subsequently expands the scope by checking
citations and references.

Subsequently, we proceeded to read through the titles of
each paper to choose papers that potentially related to video
visualization. If a title did not explicitly describe the relevance
to our surveyed direction, we further examined abstracts
and main text to determine its inclusion in our survey. The
inclusion criteria were as follows: (a) the paper involved visu-
alization of video data, and (b) the paper involved exploration
and analysis of video data while utilizing visualization tech-
niques. Within the literature collection process, we restricted
the time range from 2008 to 2023. Ultimately, we obtained
129 papers specifically focused on video visualization and
visual analysis.

Additionally, we conducted a statistical analysis of these
papers from dimensions such as journals, conferences, and
years (as illustrated in Fig. 3). The statistical information
demonstrates the substantial presence of this research direc-
tion within top journals and conferences in the visualization
domain. Additionally, there has been a continuous increase in
research efforts, particularly in recent years. This growth can
be attributed to the advancements in deep neural networks,
which have propelled the progress of computer vision tech-
niques and provided the basis for the effective implementation
of video visualization and visual analysis. At the same time,
against the rapid advancements in computer vision, there is an
urgent need for visual analysis to serve as a bridge facilitating
effective communication between humans and machines.

B. Taxonomy

To provide an overview of all the papers from various
dimensions and generate a more non-mutual classification,
we first conducted content summarization and extracted
key information from each paper. We collected information
including motivation, challenges, contributions, datasets, data
processing techniques, target users, visualization techniques,
interactive methods, and future work. This information was
stored in an Excel table for easy querying and filtering.
We then formulated this information into a design space.
In particular, we drew on traditional visual analysis workflows
and described it as three key components: data, visualization,
and interactions. Taking into account the characteristics of
video data, we refined each visual analysis component with
subcategories (details of the design space are discussed in
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Section III). The design space can also be regarded as a
terminological explanation of the visual design process, which
can provide readers with a structured and comprehensive
understanding of these papers. This is also beneficial for
researchers who lack a background in video visualization, as it
facilitates a comprehensive understanding of the role of each
term in the field of video visualization. It enables researchers
to more deeply comprehend the principles and methodologies
of various techniques throughout the visual design process.
During the review of the literature, we utilized selected terms
from the design space to summarize existing techniques.
Moreover, on our web-based survey browser, researchers can
filter and search for articles based on the terms in the design
space.

The design space of each paper is determined by the
analysis tasks and application domains. We initially classified
visual analysis tasks in existing work into four categories
based on their appearance frequency: video summarization,
video anomaly detection, video content understanding, and
video editing/enhancement. However, during the classification
process, some authors raised concerns about merging video
editing and enhancement into a category, as they have sig-
nificant differences in the context of visualization and visual
analysis tasks. After thorough discussions with other authors,
we reached a consensus and separated the original category
into two distinct categories: video enhancement and video edit-
ing. Additionally, we summarized four common application
scenarios: surveillance, sports, entertainment, and education.

In addition to describing the papers from the perspectives
of visualization workflows, analysis tasks, and application
scenarios, we have also summarized the evaluation section of
the papers to compare the technique performance. Comparing
the completeness of their evaluation can reveal the practical
utility in different application scenarios and the capabilities
to meet specific user requirements. To enable performance
comparison within the same framework, we utilized Isenberg
et al.’s [43] adaptation of Lam et al.’s taxonomy [44] to
characterize visualization evaluation forms. We adjusted the
forms of evaluation according to the area of our survey.
Ultimately, four categories were retained: “Understanding
Environments and Work Practices”, “Visual Data Analysis
and Reasoning”, “User Performance”, “User Experience”, and
“Algorithm Performance”.

Once the major description dimensions of papers were
determined, we proceeded to code all the papers based on these
dimensions. Note that the design space is divided into a fine-
grained categorization, with each paper classified based on one
or more design choices across various dimensions. In contrast,
the dimension of analytical tasks or application domains is
broader, reflecting the key objectives and research focus of
the papers. Therefore, we code each paper with one specific
task and scenario to assist readers in understanding the major
contribution of each paper, which enhances the readability
and practicality of this survey. To ensure the reliability of the
coding process, each paper was coded by at least two authors.
As a result, three authors independently coded 50 papers and
engaged in discussions to resolve any coding ambiguities,

Fig. 3. Left: number of papers over the years. Right: statistics on the number
of papers in different journal.

aiming to enhance the accuracy and credibility of the coding.
To provide a comprehensive presentation, we selected the most
cited 73 papers from all 129 papers to display the coding
results (Fig. 2). We considered the distribution of papers in
dimensions during the selection process and balanced the
number of papers in each category. In addition, we also pay
attention to the year distribution of these papers to ensure that
the papers in different years are covered.

The remaining sections of the paper are organized as
follows. In Section III, we introduce the design space used
to describe visualization design process. Then, in Section IV,
we provide a comprehensive overview of the state-of-the-
art techniques for each visual analysis task. In Section V,
we present an overview of common application scenarios of
video visualization to offer intuitive guidance. Finally, we dis-
cuss the challenges and opportunities in this research area.
Through this organization, we anticipate that this survey will
provide researchers and practitioners with a comprehensive
understanding of existing work from multiple perspectives.
The structure of our survey is depicted in Fig. 4.

III. DESIGN SPACE

In this section, we introduce a design space to describe
the characteristics of the visualization design process. As out-
lined in Section II, the foundation of this design space is
structured around three primary dimensions motivated by the
visual analysis pipeline: “data”, “visualization”, and “user
interactions”. These dimensions encompass the core compo-
nents of the visualization pipeline. By classifying research
papers according to these dimensions, we further refine the
design space by identifying and describing commonly utilized
subcategories within each dimension. This design space offers
a comprehensive and detailed description of research papers,
enriching researchers’ understanding of video visualization
techniques through a visual analysis process-based perspective.

A. Data Scale

Frames: Video is composed of a series of
continuous frames, and each frame represents
a still image within the video. Frames are the
smallest unit of video data. Tang et al. [2]
adopted the frame as the fundamental unit for
risk assessment of e-commerce videos, facilitat-

ing auditors in achieving efficient scrutiny of non-compliant
video moderation. Sun et al. [45] utilized the transitions
between frames to mine key patterns in abnormal fragments.
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Fig. 4. Overall organization of our survey paper. Section I is the introduction. Section II provides the methodology and taxonomy of our survey. In Section III,
we introduce the design space used to describe the visualization design process. Then, in Section IV, we provide a comprehensive overview of the current
state and the latest solutions for each visual analysis task. In Section V, we present an overview of common applications of video data to offer more intuitive
guidance for practitioners in visualization and visual analysis. Finally, we discuss the challenges and opportunities in Section VI. Section VII is the conclusion.

Shots: A shot is a single event that can be
considered as a semantic unit, such as an action,
a sentence, etc. Shots can be analyzed to mine
patterns and generate insights of a particular
entity or scene. For example, Huber et al. [46]

introduced a lens-oriented video editing tool, serving as a
creative aid for aspiring filmmakers to produce videos of
remarkable caliber and mesmerizing allure. Truong et al. [47]
divided the makeup steps in the video into multiple shots based
on the detection of key actions, and conducted hierarchical
analysis.

Scenes: A scene refers to a collection
of shots captured within a specific tempo-
ral interval, where the camera’s position and
perspective remain predominantly unchanged.
Kurzhals et al. [48] used scripts to conduct
scene segmentation for movies, leveraging mul-

timodal cues to assist viewers in comprehending the plot
dynamics and narrative transitions of the movie. Sun et al. [11]
divided the scenes based on the Danmu conversation timeline
and formed a tree-like visual summary for each scene.

Video: A video is organized by multiple
scenes, encompassing various shots and an
abundance of frames. Extracting and process-
ing features at the video level can be applied
to tasks such as video classification, video
summarization, video retrieval, and more. For

example, Chen et al. [48] extracted and visualized compact
summaries of storylines for efficient representation and fast
overview of TV programs. Wu and Qu [49] achieved visual
analysis of speech video style by converting speech videos

into vectors containing multimodal information and projecting
them into two-dimensional space.

B. Visual Representation

Chart-based visualizations: Visualization
charts, such as bar charts, pie charts, and
stacked charts are often used to show the
distribution of video features. For example,
Zeng et al. [3] used stacked charts to show
the percentage of students’ emotions in course

instruction. Li et al. [50] employed bar charts to represent the
risk levels of cheating among students during online exams.

Timeline-based visualizations: The time-
line is a visualization form that best matches
the characteristic of the video sequence, which
presents the abstract information or seman-
tic features extracted from the video in a
chronological order. These features are usually

represented in terms of color, texture, and shape. For instance,
EmotionCues [3] employed multiple colors in a timeline
to encode multimodal emotional features, representing the
temporal changes in the speaker’s emotions within the video.
EmoCo [9] employed a multi-level timeline visualization to
facilitate the exploration of speech content from the sentence
level to the word level.

Scatter-based visualizations: Scatter-based
visualizations are typically used to project
data extracted from videos, where each point
can represent a frame or an action. The
scatter form can assist the user in under-
standing the distribution of the video con-

tent, such as exploring clusters of frames with similar
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features or anomalies. For example, Zeng et al. [7] pro-
jected the speech content and gesture content from speech
videos separately and uses skeleton-based glyph to represent
gestures.

Graph-based visualizations: Graph-based
visualizations are commonly used to represent
relationships between frames, objects, or meta-
data within videos. They enable users to gain
insights and analyze the structure and relation-
ship within the video. For example, Renoust

et al. [51] represented the relationships between politicians
in news videos using graph-based visualization, assisting
users in discovering patterns of political connections among
public figures. Jang et al. [52] utilized a node-link dia-
gram to represent the transitions between posture clusters,
where each node visualizes a posture using a skeleton-based
glyph.

Sankey-based visualizations: Sankey-based
visualization forms are often used to show the
relationship between different modal informa-
tion or the hierarchical relationship between
different fine-grained information in a video.
For example, Wu et al. [49] summarized the

postures, gestures and rhetoric patterns through sankey dia-
grams to assist users in learning expressive techniques for
public speaking.

3D cube-based visualizations: 3D cube is
a form of visualization that restores the two-
dimensional spatio-temporal information com-
pressed by the camera into three-dimensional
space. This visualization can present the origi-
nal video content, such as the motion trajectory

of the objects in the video, or the change of eye viewpoint
when the human watches the video. Meghdadi and Irani [53]
summarize the video by presenting the pedestrian trajectory in
a 3D cube.

C. Interaction Technique

Filter/Query interaction technique allows
users to query and filter video content of inter-
est based on specific criteria, thereby narrowing
down the analysis scope and improving analysis
efficiency. Types of filtering [11], [53], [54]
include frame filters based on similar or unusual

frames, time filters based on video time period selection,
event filters based on specific events, attribute filters based on
frame attributes or object attributes, and object filters based
on moving objects.

Emphasis interaction technique enables
users to highlight and emphasize specific
regions or objects through visual effects like
highlighting, zooming, or other visual tech-
niques [9], [55], [56], [57], [58], facilitating the
presentation of meaningful patterns. Users can

use this approach to highlight key information or content of
interest and view further details.

Scaling interaction technique enables users
to observe content of interest at different levels
of granularity, facilitating their exploration of
patterns and features within the video from
a global overview to local details [50], [54],

[59]. Through scaling, users can explore patterns, trends, and
correlations within the video progressively.

Sketch interaction technique provides users
with a natural and intuitive way to create hand-
drawn sketches, which can be applied to video
annotation, visualization, and analysis [60],
[61], [62]. Through sketchs, users are able to
record and express their thoughts and opinions

on video content in a convenient manner. Ma et al. [63] utilized
sketch interaction to enable users to express and capture their
ideas more naturally without relying on complex menus or
toolbars for annotating keyframes or important segments in
videos.

IV. VISUAL ANALYSIS TASKS

In this section, we introduce typical analysis tasks in the
field of video visualization and discuss the existing visual anal-
ysis techniques along with their limitations and open problems
for these tasks. We categorize these analysis tasks into five
major types: Video summarization aims to generate a concise
and compact visualization to represent video content. Video
content understanding focuses on gaining insights from the
contextual information of the video. Video anomaly detection
is employed to identify abnormal patterns in the video stream.
Video augmentation is intended to enhance the visual effect
of the video. Video editing is used for narrative annotation and
editing of the video. Additionally, we have created a summary
table (Fig. 5), which overviews and navigates the visual
analysis techniques from the perspective of analysis tasks,
encompassing these dimensions: data processing techniques,
visualization and interaction techniques, as well as application
scenarios.

A. Video Summarization

Video summarization aims to present videos in a concise
and compact visual format to convey the key content and main
points. By employing techniques such as content extraction,
keyframe detection, and temporal compression, the length of
the video can be reduced while preserving crucial informa-
tion [68], [69]. As a result, viewers can quickly grasp the entire
video content within a limited timeframe. This technique has
been used in many applications such as surveillance [66], [70],
entertainment [71], and education [64], [65], [72]. According
to the summarization demand in different scenarios, existing
techniques can be divided into three types: navigation-based,
frame-based, and visual encoding-based.

Navigation-based technique is applied in various domains
such as online education [73], [74] and audio visual anal-
ysis [75], [76], [77], emphasizing efficient navigation and
browsing of video data. They aim to assist users in
quickly locating the content of interest and provide a more
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Fig. 5. Summary of the state-of-the-art papers from the perspective of analysis tasks, encompassing data processing techniques, visualization, interaction
techniques, application scenarios, and evaluation. Evaluation: understanding environments and work practices (UWP), visual data analysis and reasoning
(VDAR), user performance (UP), user experience (UE), and algorithm performance (AP).

user-friendly interactive browsing experience. Based on dif-
ferent navigation approaches, navigation techniques can be
further categorized as query-based, progress bar-based, and
hierarchical-based.

Query-based technique refers to the method of searching
and locating specific content in videos using various forms of
queries, such as text queries [78], [79], [80], voice queries [64],
and image queries [81]. TalkMiner [78] utilizes slide detection
algorithms to create searchable text indexes, enabling users
to easily search and browse lecture webcasts. Additionally,
relying only on existing key information for queries some-
times leads to difficulties in accurately expressing search
demands. Therefore, NoteVideo [81] employs an approach to
extract geometric shapes, formulas, and other concepts from
blackboard-style educational videos. They generate a sum-
mary image representing these mathematical concepts, which

serves as a navigation interface, enabling users to directly
navigate to specific video frames associated with particular
concepts.

Progress bar-based technique provides users with a compre-
hensive overview, eliminating the need for full-text searches
within videos. Current techniques commonly leverages the
segmented video within the progress bar to assist users
in nonlinearly locating and navigating to specific segments.
By displaying pertinent information such as video key-
words [74], thumbnails [65], [73], [82] on the progress bar
of the video player, users can gain an intuitive understanding
of the overall structure and content distribution of the video.
Users can swiftly navigate to areas of interest for playback
by either dragging the slider on the progress bar or directly
clicking on the thumbnails. Moreover, the progress bar-based
navigation also offers specific fast-forwarding techniques for
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Fig. 6. (A) RubySlippers [64] supports content-based navigation, which
can help users browse guide videos more easily (B) Subramanian et al. [65]
use visualization and interactive methods to help users understand audiovisual
data and gain valuable insights. (C) Wang et al. [66] discuss video placement,
spatial context rendering methods, and their impact on path reconstruction
tasks. (D) Sunkavalli et al. [67] generate high-quality still images from short
video clips. (E) Ma et al. [61] summarize the multimodal movie data in a
map. (F) Liang et al. [56] summarize the eye-tracking information and image
saliency in a spatial-temporal cube.

controlling the video’s playback progress, such as frame
skipping [70] and temporal blending [76].

Hierarchical-based technique refers to the process of divid-
ing a video into multiple hierarchical structures and providing
summaries and thumbnails for each level, enabling users
to effectively utilize the hierarchical information to quickly
locate segments of interest [47], [76]. This approach is com-
monly employed for lengthy videos such as courses [47]
and documentaries [76]. Existing research typically employs
automated processing techniques to convert videos into text
and generate segmentation or summaries. For instance, [47]
has demonstrated automatic recognition and segmentation of
detailed action steps in makeup tutorial videos, with rough
categorization based on facial features. However, automated
segmentation and summarization methods may not fully sat-
isfy users’ flexible requirements. Therefore, Video Digests [76]
allows users to manually mark chapters or sections within
videos to enhance the accuracy of generated summaries,
building upon automated segmentation techniques.

Frame-based technique is extensively employed in various
domains, including surveillance [66], [83], sports [84], and
transportation [85]. These methods consider videos as a series
of static images, with each image representing a specific
moment in the video. By processing and integrating the
information extracted from video frames, they generate com-
prehensive video summaries that enable users to quickly and
intuitively comprehend the themes and content of the videos
from a global perspective. Depending on the input data format,
these methods can be categorized into two types: multicamera-
based [84], [86], [87] and singlecamera-based [67], [71], [85].

Multicamera-based technique fuses and visualizes contex-
tual information from multiple cameras, providing users with
a holistic view. One of the main challenges involves integrat-
ing video streams from different cameras while maintaining
scene consistency and coherence. To address this challenge,
existing research first aligns, calibrates, and synchronizes the
image data from different cameras, and further fuses them to
generate panoramic images or wide-angle videos. Computer

vision techniques employed in the fusion process include
multi-view video synthesis [87], path reconstruction [66],
and viewpoint transformation [84]. The fused videos can be
presented using multi-field visualization methods [66], [84]
and spatial layout-based visualization techniques [86].

Singlecamera-based technique focuses on summarizing the
specific semantic content of the videos. They can be further
categorized into two subtypes: video key content extrac-
tion [67], [71] and spatiotemporal information analysis [85],
[88]. Video key content extraction relies on the data mining
techniques, such as visual saliency of video frames [67],
and semantic information within the video [71]. Furthermore,
summarizing spatiotemporal information based on moving
objects in videos facilitates a better understanding of object
trajectories, interactions, and relationships. Such object infor-
mation can be presented and analyzed using visualization
techniques like trajectory presentation [85] and spatiotemporal
relationship graphs [88].

Visual encoding-based techniques aims to abstract events,
object features, or other metadata in the video as graphic-
based symbols, enabling the revelation of patterns within
the video. Existing research employs various visualization
methods to abstract summarization of video content. These
methods primarily include temporal-based [72], 2D spatial-
based [89], [90], and 3D cube-based [53], [91] visualization.

Temporal-based technology [72], [92] primarily employs
timeline-based visual forms to organize and present abstracted
object features or events from the video in chronological order,
showcasing their temporal sequence and evolution.

2D spatial-based technique is no longer confined to the tem-
poral attributes of videos. Instead, it enables users to engage
in nonlinear exploration [10], [61], [89]. These techniques
extract and abstract the spatiotemporal correlations among
events or objects within videos and depict state transitions as
structured attribute information. In visualization, hierarchical
visualizations [61], map metaphors [10], [61], and other visual
forms are employed to provide an overview of the contex-
tual information in videos. Moreover, to present the specific
content of videos intuitively, certain works [93] segment
videos based on their semantic information and summarize
the spatiotemporal variations of objects within video segments
through the generation of static spatiotemporal snapshots of
moving objects.

3D cube-based technique combines temporal information
and spatial contextual information from videos [53], [91],
[94]. In a 3D cube, one dimension represents temporal infor-
mation, while the other two dimensions depict 2D-based
spatial information. For instance, Liang et al. [94] (Fig. 6(A))
devised a static spatiotemporal cube visualization method to
summarize the spatiotemporal distribution of eye-tracking data
and image saliency. Although this 3D visualization approach
integrates more comprehensive information into a single space,
its extensive representation within a 3D volume may impose
a significant cognitive load and incur high rendering costs.

Limitations and Open Problems: Although existing video
summarization techniques have made significant progress,
there are still some limitations and potential directions
for future research. First, navigation-based techniques show
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Fig. 7. A comparison of three video summarization techniques (navi-
gation-base, frame-Based, and visual encoding-based techniques) on four
dimensions: scalability, summarization quality, advantages, weakness.

Fig. 8. (A) VideoForest [11] summarizes the movie scenes in a forest-style
visualization. (B) This paper [95] builds video data concept vectors and
performs semantic similarity calculations to achieve semantic classification.
(C) Wang et al. [96] utilized clustering analysis, frequent pattern mining,
and anomaly detection to assist users in identifying traffic flow patterns.
(D) GestureLens [7] aims to help professional presentation coaches improve
their gesture training by analyzing presentation videos.

limitations when dealing with complex and vague queries.
Thus, how to transform users’ vague intentions of video
queries into tasks that are understandable by machines remains
an open issue. Second, frame-based techniques provide an
intuitive overview of video content, but they fall short
in integrating audio, text, and other modalities. This lack
of integration fails to meet the need for a comprehensive
and in-depth video summarization. Finally, visual encoding-
based techniques, while providing key patterns and contextual
information of videos, still face challenges in dealing with
long-duration videos. These challenges include how to visu-
alize large volumes of video content to generate compact
representations, and how to represent them appropriately in
detail.

B. Video Content Understanding

Video content understanding involves conducting in-depth
analysis and interpretation of the video, including semantic
information and contextual relationships. This requires the uti-
lization of computer vision and machine learning techniques,
such as object recognition [16], action analysis [3], [27], [57],
and scene understanding [97], to extract relevant information
from the video. Visual analysis techniques are then applied
to gain valuable insights and enhance the understanding of

video content. This analysis method has been used in surveil-
lance [96], education [7], [72], [98] and other fields [99],
[100]. Depending on the specific focus and scope of content
understanding, visualization techniques can be categorized into
two categories: context-based and behavior-based.

Context-based comprehension of video content refers to the
analysis and comprehension of the overall content of a video,
including aspects such as scenes, backgrounds, and plots. This
approach involves modeling the spatial and temporal context of
the video to identify scenes, understand the plot, and infer the
progression of events. Existing visualization methods analyze
videos from two perspectives: the multi-level information
analysis and the horizontal analysis of multimodal data. The
multi-level information, such as scenes, shots, and actions, aid-
ing users in better understanding the structure and information
of the video content. The core idea revolves a overview-to-
detail exploration, which enables users to selectively focus on
and analyze specific video segments of interest while maintain-
ing an understanding of the entire video content. Some studies
employ interactive operations, including scaling, panning, and
filtering, through scalable timelines [9], [48], [101] to allow
users to adjust their focus and level of analysis. To reveal
the interconnections between different levels of video content,
some research employs graph structures [51] and personalized
visual metaphors [63], to enhance the understanding of video
semantic structure.

Although existing visualization techniques can help users
better explore the content of videos, these techniques only
reveal a single modality in the video data. However, videos
typically encompass various modalities of information [8],
[55], [98], including text, images, and audio. Different modal-
ities complement and validate each other, and the integration
and analysis of multiple modalities yield richer contextual
semantic information. The challenge in video content under-
standing lies in the distinct representations and features
of different modalities. To address this challenge, existing
visualization techniques [49], [101] unifies information from
multiple modalities in the video onto shared attributes, such
as emotions, postures, and actions, to facilitate communication
across modalities. In terms of visualization, researchers have
employed Sankey diagrams [9], [49], multidimensional tem-
poral graphs [101], and basic charts [102], [103] to present
multimodal attribute information and the interrelationships
between modalities. Interactive operations such as filtering and
brushing allow users to explore the differences and consis-
tencies between modalities. Furthermore, different modalities
may contain redundant information. To integrate meaningful
information from different modalities, some studies utilize
sequence analysis techniques [9] to filter out key information
from each modality.

Behavior analysis refers to understanding video content
by analyzing moving objects in the video. This approach
involves computer vision techniques such as object detection
and tracking techniques to extract moving objects from video
and analyze their behavior with visual analysis techniques.

Existing visual analysis techniques employ automated algo-
rithms to extract object behaviors and employ pattern mining
techniques to discover patterns and regularities in object
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Fig. 9. A comparison of three video content understanding techniques
(content-based and behavior-based techniques) on four dimensions: scala-
bility, conprehension ability, advantages, weakness.

motion. These patterns are then presented and explained
through visualizations. Commonly used pattern discovery
techniques include clustering analysis [104], [105], [106],
[107], frequent pattern mining [96], topic extraction [55],
comparative analysis [27], and other machine learning meth-
ods [108], which are used to uncover spatiotemporal variations
of moving object within the video. For instance, Wang
et al. [96] utilized clustering analysis, frequent pattern mining,
and anomaly detection to assist users in identifying traffic
flow patterns and trends in traffic videos. In a map-based
visualization approach, they showcased the trend of traffic
patterns over time using a timeline and represented traffic
density information with heatmaps. As automatically extracted
patterns may not necessarily align with user interests, this
research also supported user customization of queries and
filtering. Similarly, studies [27], [104], [108], [109] employed
timeline-based visualizations to depict the spatiotemporal evo-
lution of video object patterns, while another study [109]
provides a visual summary of object motion patterns within a
specific video segment using heatmaps.

Limitations and Open Problems: Current video content
understanding techniques commonly lack interpretability,
prompting future research to focus on developing more inter-
pretable methods. The interpretable techniques would help
users gain a deeper understanding of the system’s reasoning
processes while supporting user feedback on model results.
In addition, processing long-duration video content continues
to be a challenge. Effective modeling and structuring of video
content for quick browsing and in-depth analysis still require
further exploration.

C. Video Anomaly Detection

Video anomaly detection aims to identify aberrant pat-
terns and behaviors within video streams [110], [111], [112].
Anomaly is highly correlated with abnormal periods and
abnormal subsequences in videos which tends to occupy only
a small fragment of the overall video stream. By modeling
exceptional behaviors in the videos, it becomes possible to
detect non-standard, sudden, or irregular events. This tech-
nique finds extensive application in security surveillance [1],
[26], [113], enhancing the efficiency and accuracy of video
monitoring systems. The existing techniques primarily contain
advanced image recognition techniques [1], [113], [114] and
sequential anomaly detection algorithms [2], [26], [54] to
detect and recognize complex abnormal behaviors and events
in video image sequences.

In terms of the image recognition techniques, some works
model the anomaly based on the image features [1], [45],
[113]. RipViz [1] integrates machine learning with flow
analysis feature detection to extract rip currents from static
videos. Utilizing optical flow technology, it captures unstable
2D vector fields from these videos, which aims to analyze
the motion of each pixel over time. The identified rip cur-
rent locations are then overlaid on the original video for
an intuitive visualization. Furthermore, some works leverage
multimodal anomaly detection algorithms to discover video
anomalies [2], [26], [58]. The reciprocal verification of infor-
mation between different modalities yields more precise results
in anomaly detection and analysis. These methods employ
deep learning models, such as multimodal convolutional neural
networks [115], to jointly analyze multimodal data, achieving
enhanced accuracy in detecting and analyzing anomalies.

In terms of visualization, these techniques employ charts
[115], custom glyphs [54], and maps [58] to present multi-
modal data, assisting users in intuitively comprehending the
anomalous information within. For example, Tang et al. [2]
(Fig. 11(C)) introduced a risk-aware framework named Video-
Moderator, designed for rapid detection and removal of
inappropriate or explicit content in e-commerce live streaming.
This work follows a “learn and moderate” strategy, which
supports interactive iterative labeling of authentic multimodal
video tags, bridging the gap between human moderators and
machine learning models.

However, these models for video pattern recognition are
a “black box” for users. To solve this problem, recent stud-
ies [116], [117] have introduced interpretation techniques in
visual predictive analytics to explain these predictive mod-
els. Additionally, some works adopt the hierarchical-based
approach to scrutinize anomaly information at different lev-
els of granularity, verify the reliability of model results,
and capture the complex details of anomalies. For instance,
Piringer et al. [54] conducted surveillance on video streams
within road tunnels, establishing a context-sensitive priority
concept for anomalous information to delineate scenarios
ranging from routine operations to catastrophic disasters. The
visualization interface presents event information at various
levels of abstraction, including time-based abstract event list-
ings, spatial-temporal anomalous events within the tunnel,
and detailed monitoring videos corresponding to each event.
Similarly, Li et al. [50] detected and analyzed students’ head
and mouse movements during exams, visualizing suspected
cheating behaviors across different hierarchical levels, and
facilitating swift identification by educators. This primarily
encompasses four levels: a student list view for a quick
overview, a problem list view incorporating risk indicators,
a behavior view encompassing mouse and head movements,
and a replay view showcasing the original video.

Limitations and open problems: Although existing research
has predefined anomalies based on different contexts, the
definition of anomalies often relies on individual experience
and specific backgrounds. As a result, there is still a lack
of consensus between human intent and model understand-
ing. Future research can leverage visualization techniques to
incorporate individual intuition and expertise into the video
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Fig. 10. A comparison of three video anomaly detection techniques
(image feature- based, sequence feature-based, and multimodal feature-based
techniques) on two dimensions: advantages, weakness.

Fig. 11. (A) Piringer et al. [54] conducted surveillance on video streams
within road tunnels, (B) Silva et al. [1] introduced a feature detection method
based on deep learning and flow analysis, which is used to extract the location
of tearing flow from static video and display it visually. (C) Videomodera-
tor [2] presents the multimodal user interface for video moderation.

analysis process, thereby facilitating consensus on anomalies
between humans and machines. Additionally, some studies
have attempted to utilize multimodal information for anomaly
detection, but the interpretability of the model’s results is
typically lacking. Therefore, future research can explore the
interrelationships among multimodal information to assist
users in validating the consistency between different modali-
ties, and then better support decision-making.

D. Video Editing

Video editing entails the annotation [118], [119], [120],
clipping [46], [121], [122], or stylized rendering [62], [123],
[124], [125] of original videos to enhance their comprehensi-
bility or achieve specific narrative effects. These techniques
are mainly used in sports videos [4], [6], entertainment
videos [120], and educational videos [122].

Annotation-based video editing focuses on annotating
objects, behaviors, events, and other elements within videos to
generate more understandable video content. This task presents
a notable challenge as it involves manual annotation, demand-
ing substantial time and effort. To address this predicament,
existing methods primarily alleviate the burden of human
annotation through two approaches: automated video semantic
extraction and user-friendly interactive video annotation.

Automated video semantic extraction techniques employ
advanced algorithms encompassing computer vision, natural
language processing, and semantic understanding, to initially
identify and extract the information that needs to be anno-
tated. These algorithms facilitate the automatic recognition and
annotation of content and objects within videos, thus allevi-
ating human cognitive loads associated with comprehending
basic video elements. Subsequently, these techniques also
enable users to interactively annotate videos, catering to their
personalized annotation requirements. Existing studies [6],
[119], [126] usually establish appropriate annotation guide-
lines based on specific scenarios. Their guidelines encompass

the objectives, content, and standards for annotation, as well as
the visual representation of annotations. For rules of specific
contexts, these guidelines offer annotation recommendations
while ensuring the accuracy and consistency of annotations,
thereby enhancing the efficiency and reliability of the annota-
tion process. The visual presentation of annotations typically
involves embedding scene-specific symbols into the video
content, augmenting the efficiency of video comprehension.

To enrich the information conveyed by videos and fulfill var-
ious video comprehension demands, certain studies [6] intro-
duce supplementary information such as textual comments,
viewer perspectives [4], and question-answer pairs [127] as
annotations for videos. Furthermore, in addition to enhanc-
ing video comprehension through visual annotations, some
works [128] employ these annotated data to support the
development of video event recognition models.

User-friendly interactive techniques [120], [128] emphasize
the design of user-friendly interfaces and intuitive interac-
tion methods, facilitating user convenience in video editing
and annotation processes. For instance, EventAnchor [128]
(Fig. 13(A)) is a user-centric annotation tool composed of
a selector and an annotator. This annotator enables users to
choose event types from a predefined list and apply them
to specific time intervals within the video. Furthermore, once
users have selected one or multiple event types, they can utilize
the annotator to append further context-specific details.

Clipping-based video editing focuses on the cutting and
arrangement of video clips to create a specific narrative.
Existing techniques employ automated algorithms to identify
keyframes, segments, or events, assisting users in quickly
marking significant moments. This allows users to concentrate
on the creative process itself rather than the editing process,
thereby enhancing video editing efficiency. In addition to
editing raw video materials, editors can enhance the artistic
appeal and attractiveness of videos by incorporating addi-
tional elements. These supplementary elements can include
images, audio, animations, etc. In terms of visualization,
certain works [46], [122] provide a key-information-based
timeline and thumbnails for videos, enabling editors to better
comprehend the structural content, temporal relationships,
and logical connections between segments. This method is
convenient for users to precisely control the time duration,
and transition of the video in the process of editing the video.

Although timeline-based editors support intuitive and flex-
ible editing, these tools may only be suitable for individuals
with some video editing experience, and require a learning
curve for novice creators. To improve editing efficiency for
novice creators, several works [46], [122] summarize com-
monly used editing techniques and offer recommendations
and guidance (such as editing skills, transition techniques,
audio processing methods, subtitle design techniques, etc.)
to editors. For instance, B-Script [46] (Fig. 13(B)) leverages
data-driven recommendation algorithms to provide valuable
references for editors, aiding them in making decisions about
adding supplementary information.

Stylized video rendering is to enhance the visual pre-
sentation and viewing experience of videos by applying
artistic effects and style transformation techniques. Existing
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Fig. 12. A comparison of three video editing techniques (annotation,
clipping, and stylized rendering techniques) on four dimensions: scalability,
editing quality, advantages, weakness.

Fig. 13. (A) EventAnchor [128] is a user-centric annotation tool composed
of a selector and an annotator. (B) B-Script [46] leverages data-driven
recommendation algorithms to provide valuable references for editors.
(C) AniPaint [123] supports interactive control over individual regions and
keyframe settings for individual strokes by users.

works predominantly employ machine learning and artificial
intelligence techniques such as image style transfer [123],
[129], [130] and video synthesis [62], [124] to achieve artistic
rendering of videos. The difficulty in implementing these
techniques is to maintain the consistency of video object
details and appearance. Specifically, it provides a unified
abstraction and temporal coherence while accurately rendering
the art style in terms of details and object boundaries. Further-
more, to address the need for fine-grained and personalized
rendering, some studies combine automated painting rendering
with detailed interactive control, utilizing either stroke-based
approaches [123] or gesture-based approaches [62].

Limitations and Open Problems: Existing video editing
techniques primarily focus on two aspects: video editing
skills [46], [122], [123] and automated semantic extraction
techniques [4], [6], [128]. However, these studies are not
sufficient in mining and understanding users’ editing inten-
tions. Accurately interpreting and expanding users’ editing
intentions, and subsequently providing editing suggestions that
align with their needs, can significantly reduce the editing
burden on users. This is especially important for novice
users, as their editing intentions tend to be more ambiguous.
Furthermore, with the rapid growth of video content, the
demand for video editing has also increased. However, existing
techniques do not support batch video editing. There are
several challenges in this process: (1) the effective presentation
of batch videos. (2) Understanding users’ editing intentions
and extending these intentions to batch videos. (3) Validating
that batch editing operations align with users’ intentions. These
are open problems that have not been fully explored.

Fig. 14. (A) Lin et al. [5] describes a technique for enhancing the viewing
experience of basketball games through embedded visualization technique.
(B) TIVEE [137] is an immersive visual analysis system designed to help
users explore and explain badminton tactics from multiple perspectives.
(C) Liu et al. [139] introduced a point cloud-based multi-view stereo matching
algorithm for free-viewpoint video.

E. Video Enhancement

Video enhancement techniques employ visualization tech-
niques to enhance the video quality and viewing experience,
including enhancing video content, improving visual effects,
and improving viewers’ understanding of videos. These
techniques have been used in many fields such as surveil-
lance [131], [132], sports [5], [133], and entertainment [134].
Based on different technical characteristics, current techniques
can be mainly divided into three types: graphical embedding-
based [5], [132], [135], [136], immersive-based [137], [138],
and 3D augmentation-based [139], [140].

Graphical embedding-based techniques involve the inte-
gration of visual elements, such as graphics [126], [141],
[142], labels [143] and charts [141], into raw videos to provide
annotations and contextual cues. By inserting visual represen-
tations such as arrows, lines, shapes, crucial points, and actions
into the video, the video content can be clarified and accen-
tuated, thereby enhancing the viewer’s understanding and
attention. However, unsuitable embedding may hinder users
from gaining insights into the video data. To tackle this chal-
lenge, numerous rule-based visualization methods have been
proposed. For instance, Stein et al. [136] summarize the game
movement states in soccer videos and design corresponding
bespoke visual forms (e.g., heat maps, doughnut charts, and
timeline movement paths). VisCommentator [126] summa-
rizes objects, events, and tactics in table tennis matches and
recommends contextualized visual forms to users. It enables
personalized adjustments of the semantic information embed-
ded in the video annotations, facilitating the production of
high-quality augmented videos.

Immersive-based techniques utilize immersive interactive
devices, such as head-mounted displays [134], [144], [145],
to enhance the viewpoints of videos, thereby heightening the
viewer’s sense of engagement and immersion. This technique
provides diverse perspective choices, such as third-person and
first-person viewpoints, enabling viewers to observe video
content from varying angles and obtain distinct insights
and experiences. However, realizing such immersive inter-
action also confronts several key challenges: the avoidance
of visible distortions and discontinuities at depth discontinu-
ities. To overcome these issues, Ana et al. [138] adopt an
image-based rendering approach that converts depth informa-
tion into a 3D grid and perform corresponding translations
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Fig. 15. A comparison of three video enhancement techniques (Graphics
Embedding-based techniques, Immersive-based techniques, and 3D Enhance-
ment-based techniques) on three dimensions: enhancement effect, advantages,
weakness.

based on viewers’ head movements to generate new
perspectives.

3D augmentation-based techniques offer viewers a more
realistic viewing experience. By transforming two-dimensional
videos into three-dimensional format, viewers can access
videos with unrestricted viewpoints, perceive the depth and
distance of objects within the video, and acquire a heightened
sense of authenticity. Existing methods [139], [140] address
the data sparsity and discontinuity caused by camera posi-
tion changes by proposing viewpoint-matching algorithms to
ensure visual consistency and coherency.

Limitations and Open Problems Current annotation-based
techniques primarily focus on enhancing specific frames,
actions, and shots, rather than a comprehensive understanding
of the overall video content. While automated detection and
annotation recommendations have improved the convenience
of user interaction, video annotation remains a cognitively
demanding task for users who are not familiar with the video
content. In future work, annotation enhancement of video con-
tent can be developed based on concepts or questions proposed
by users, further enhancing the accessibility and understanding
of video content. Secondly, although existing immersive-based
techniques provide users with a fully immersive interactive
experience, most methods enhance video content only through
the visual channel, ignoring other sensory channels such as
hearing and touch. Moreover, research on user experience
evaluation (such as the authenticity of user perception, the
naturalness of interaction, and the comfort of long-term use)
for immersive-based video enhancement techniques is still
insufficient. Lastly, 3D augmentation-based techniques, due to
their high computational complexity, are difficult to apply in
real-time video analysis and have certain limitations in terms
of user interaction.

V. APPLICATIONS

In this section, we categorize video data according to
application scenarios and summarize four major types of
video data: surveillance video for indoor scene and outdoor
scenes, sports video for individual sports, double-player sports
and team sports, entertainment video for movies and news,
education video for course video and presentation videos. For
each application scenario, we first describe the characteristics
of the video data, then discuss the research value, challenges,
and the existing visual analysis techniques. In discussing
visual analysis techniques, we also provide a discussion
based on the visual analysis tasks summarized in Section IV.

Fig. 16. (A) sViSIT [53] maps the spatial-temporal trajectory into a 3D
cube. (B) Fan et al. [58] utilizes IBM-S3 for temporal anomaly detection
and employ a matrix arrangement visualization approach. (C) Viz-A-Vis [89]
maps the activity space into a 3D cube for visual analysis and exploration.
(D) Botchen et al. [88] propose the video stream summarization technique
based on multi-attribute mapping.

Additionally, we have constructed a summary table (Fig. 17),
which overviews and navigates the visual analysis techniques
from the perspective of application scenarios, covering seman-
tic context, visualization and interaction techniques, as well as
the datasets.

It is worth noting that most of the datasets used in our
surveyed papers are not public standard datasets, but rather
collected through the internet platforms or recorded by the
authors. Datasets in the field of video visualization are usually
designed for specific application processes, hence the data
used not only includes the raw videos but needs to extract
other modalities and forms of information extracted from these
videos according to different task requirements to support
visual analysis and exploration. Therefore, we summarize the
datasets based on specific application scenarios.

A. Surveillance Video

In various domains such as transportation [70], [96], [131],
[146], residential facilities [66], [89], [107], and public
safety [54], [88], [132], there is a growing demand for high-
quality on-site videos and intelligent security alerts. Video
surveillance techniques have been widely employed in societal
production and daily life, particularly in the areas of security
monitoring [45], [88], early warning [54], and emergency
linkage [132]. However, the lengthy and monotonous nature
of surveillance video poses great challenges for surveillance
video review. The primary objective of surveillance video
analysis is to perform video summarization and identify video
anomalies. Existing approaches model and analyze the state
sequences of active subjects (individuals and vehicles) in
surveillance videos, achieving advanced semantic mining and
comprehension of video content. In this section, we cate-
gorize these visual analysis approaches based on different
surveillance environments: outdoor-based [53], [54], [85],
[86], [132] and indoor-based [50], [88], [89]. We provided
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Fig. 17. Summary of the state-of-the-art papers from the perspective of application scenarios, covering semantic context, visualization, interaction techniques,
dataset, and evaluation. The glyph in the dimension of the dataset represents the average time duration of the videos. Evaluation: understanding environments
and work practices (UWP), visual data analysis and reasoning (VDAR), user performance (UP), user experience (UE), and algorithm performance (AP).

detailed descriptions of these two categories of research in the
following subsections.

Outdoor-based surveillance involves complex scenes and
objects, such as background disturbances, dynamically chang-
ing environments and the presence of non-target objects.
The datasets involved in this scenario include public place
videos [53], [85], [86], tunnel videos [54], and campus
videos [58]. The duration of these videos is approximately
30 minutes. Current works major involves two aspects: sum-
marization of the object activity and anomalous monitoring.

Certain studies focus on summarizing the activity of pedes-
trians in surveillance videos [53], [85], [96]. Due to the
definition of outdoor-based surveillance video is low, and the
monitored object occupying a small proportion of the video
screen, it is difficult to capture microscopic human activities
such as facial expressions, presentation content, and posture.

Therefore, the trajectory information of moving objects has
become the most critical feature in exploring the activities.
Notably, spatial location information and temporal information
are the main attributes of trajectory data.

In the stage of trajectory data extraction, the visual
techniques involve moving object detection and trajec-
tory matching. Most works [53], [85], [86] employ opti-
cal flow, foreground and background segmentation, and
frame-difference methods to achieve moving object detection.
Based on the detected objects, they locate the context position
of the same target based on the proximity of object positions in
adjacent frames to achieve trajectory extraction. This trajectory
extraction method requires less computation. However, it is not
suitable for scenes with high crowd density.

In terms of visual design, existing works represent trajecto-
ries with points [53], lines [86], and strips [85]. Nie et al. [86]
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and Hoeferlin et al. [85] summarize the motion state of the
monitored objects based on the trajectory data, to realize
the fast browsing and retrieval of the video. Specifically,
Nie et al. [86] propose a compact video synopsis technique
based on optimized spatiotemporal trajectory. This technique
achieves trajectory fusion without overlap and collision which
improves the utilization of time and space. Hoeferlin et al. [85]
map clustered trajectory data to a 2D visual space. They
draw video scenes with cartoon illustrations and use strips
with arrows to represent the trajectories. This form of visual
mapping improves the speed of data perception and enhances
the user’s memory of video content. In order to enable
users to interactively filter and explore trajectory patterns,
Meghdadi et al. [53] map the trajectories into visual a 3D
cube (Fig. 16(A)). The visual prototype they proposed allows
users to select regions of interest and filter events based on
the spatiotemporal characteristics of motion.

Furthermore, some studies are dedicated to anomalous mon-
itoring of surveillance videos [54], [58], employing automated
anomaly event detection algorithms for video surveillance. Fan
et al. [58] (Fig. 16(B)) utilize IBM-S3 for temporal anomaly
detection and employ a matrix arrangement video visualization
approach that integrates information from different camera
sensors and geographical locations to enhance detection accu-
racy and response speed. Piringer et al. [54] utilizes sequence
analysis techniques to predict potential anomalies (such as
fires) in tunnels, and employs tunnel imagery visualization
with abstract graphics to visualize detected events. Users can
access any temporal and spatial points to validate predicted
anomalies in real-time or historical videos.

Indoor-based Surveillance has a relatively narrow mon-
itoring scope and can be assisted with various sensors and
audio recording tools (such as recorders, muscle sensors,
and motion sensors.) to achieve more detailed monitoring.
Effectively utilizing such data to achieve advanced seman-
tic content understanding in videos is a promising research
topic. A critical task is the transformation, alignment, and
coordination of multimodal data. Another critical task is the
transformation, alignment, and coordination of multimodal
data. The datasets involved in this scenario include shopping
mall datasets [88], classroom videos [3], [45] and mock online
exam videos [50]. The duration of these videos scales from
10 minutes to 30 minutes. Compared with outdoor surveillance
video, indoor surveillance video has a higher definition and can
capture more subtle human activity information. Therefore, the
subtle state information of the monitored object, such as facial
emotion, posture, and motion state, becomes the main features
in exploring the activities [3], [88], [89].

Most of the existing visual analysis techniques use
timeline-based visualization to represent the state information
of monitored objects, which aims to convey the evolution
patterns over time. Zeng et al. [3] model facial emotion to mine
and analyze student status in the classroom. They propose
an interactive visual analysis tool EmotionCues, which uses
multi-view linkage to present the evolution pattern of the
monitored student’s emotion. Likewise, Li et al. [50] con-
sider head movement as an essential indicator for assessing
the cheating behavior of candidates during online exams.

Fig. 18. (A) DanceVis [108] is proposed to assist teachers in eval-
uating the dance movements of students. (B) Liu et al. [106] proposed
a viewpoint-invariant visualization approach that facilitates interactive and
customized analysis of motion postures within videos. (C) Polk et al. [104]
designed a visualization system named CourtTime to analyze tennis videos.
(D) ShuttleSpace [147] visualized the shuttle trajectories in virtual reality;
(E) Stein et al. [136] integrated multiple visualization charts into soccer videos
for further analysis. (F) Wu et al. [148] proposed a visual analysis system,
named ForVizor, to help users explore the team movements of soccer matches.

They also use band diagrams to plot the candidates’ head
movements at different angles. To associate multimodal data,
Botchen et al. [88] (Fig. 16(D)) combine geometric infor-
mation, semantic information, and statistical information to
realize the mining of individual behavior patterns and the
correlation of inter-individual behavior patterns. There are
also some works devoted to analyzing overhead perspective
videos. For example, Romero et al. [89] focus on analyzing
surveillance video from the overhead view (Fig. 16(C)). They
create a 3D activity cube analysis tool so that users can observe
activity changes in a monitored space.

B. Sports Video

Sports videos have been visualized and analyzed by vari-
ous visual analysis methods to help people mine individual
movement patterns, confrontation strategies, and team tac-
tics. Current sports video visualizations mainly focus on
specific sports scenarios, such as running [27], dance [108],
[149], cycling [150], tennis [57], [104], table tennis [105],
snooker [151], baseball [152], [153], rugby [60], and soc-
cer [109]. The datasets for these videos are typically sourced
from public sports matches [105], [109] or recorded by the
authors [84], [148]. The duration of these videos scales from
30 minutes to 90 minutes. The view scope and clarity of
these videos vary with different sports scenarios and the num-
ber of athletes involved, leading to differing complexities in
visual analysis. Therefore, we further divide these sports into
three categories: individual sports, double-player sports, and
team sports based on the number of athletes.

Individual sports involve only one athlete, such as
dance [108], [149], bicycling [150], and running [27]. The
visual analysis techniques based on individual sports focus
on the kinematic performance and technical intricacies of
individual athletes. These analytical approaches aim to track
the articulations and bodily segments of athletes, capturing
and analyzing the precision of their postures, the fluidity
of their movements, and the congruity of their technical
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elements. They enable the visualization and analysis of action
curves [149], motion trajectories [150], and other data [108].

By employing visualization techniques, a comprehensive
understanding of athletes’ technical strengths and areas for
improvement can be obtained, thereby providing them with
more precise training guidance. For example, DanceVis [108]
is proposed to assist teachers in evaluating the dance move-
ments of students. It extracts four physical and four behavioral
attributes from dance video. Then, it calculates similari-
ties between standard and student pose skeletons as the
recommended score of their dance. In visualization, they
integrate multiple charts such as scatter plots, radar charts,
bar charts, and line charts to present the reference indicator in
multi-aspect for teachers. In order to enable amateur runners
to discern the fundamental disparities between their running
postures and those of professional runners, Liu et al. [27]
(Fig. 18(B)) propose a viewpoint-invariant approach that facil-
itates interactive and customized analysis of motion postures
within videos.

Moreover, there are also some techniques devoted to
enhance the kinematic patterns of crucial body segments by
incorporating graphical embeddings into individual sports.
Kaplan et al. [150] propose a visual design that embeds visual
representations into cycling training videos to enhance the
pattern of cyclists’ pedaling. In this work, the authors apply
circular form charts (e.g., circle arrows and triangles) to dis-
play the pedaling data to help users figure out and understand
cyclists’ movement patterns in cycling training. To further
enhance the emotional expression in the such videos, Payne
et al. [149] (Fig. 18(A)) propose danceOn, which allows
users to design cartoon elements based on different movement
patterns and embed them into dance videos to enhance the
emotional expression.

Double-player sports involve two players such as bad-
minton [137], [147], tennis [59], [104], [118], table tennis [57],
[105], [128], and snooker [151]. The visual analysis techniques
based on double-player sports focuses on the interaction or
adversarial relationship between two participating athletes.
The primary objective of these techniques are to delve into the
strategies of athletes’ movements. In terms of visualization,
the main emphasis contents are placed on the visual repre-
sentation of spatial relationships [137], [147], confrontational
movements [59], [104], and modes of mobility between the
objects [105]. Through the implementation of visual analysis
techniques, one can observe and study the tactical choices,
execution, and resultant effects within the domain of double-
player sports. The invaluable value of such endeavors extends
to coaches and athletes alike, as it facilitates collaborative
improvements, fortifies opponent analysis, and enables the
formulation of more efficacious strategies. However, there
are two major challenges: (1) how to effectively present the
overview of match details and (2) how to efficiently annotate
large and dense motion events in sports videos.

To analyze and summarize match detail in double player
sports effectively, Ye et al. [147] proposed an immersive visual
analysis tool named ShuttleSpace to help analysts explore
and analyze the movement of ball trajectory in badminton
games (Fig. 18(D)). Similarly, Polk et al. [104] (Fig. 18(C))

designed a visualization system named CourtTime to analyze
tennis videos. In this work, at first, they collect the location
data from the match videos. Then, 1D space-time charts and
2D movement charts are employed to convey the insights of
the tennis match. In addition, researchers work on reducing
human interaction and effort in annotating double player sports
videos [126], [128]. For example, VisCommentator [126] auto-
matically extracts the objects and events in table tennis videos
and allows users to interactively annotate these items. It allows
analysts to brush the timeline and select recommended visual
elements to generate table tennis augmenting videos.

Team sports are usually played with two teams involving
many athletes such as soccer [106], [109], American foot-
ball [60], [135], and baseball [119], [152], [153]. For team
sports videos, research focuses on retrieving and summarizing
the team movement pattern and analyzing team tactics. In the
context of team sports, the visual analysis techniques focus
on analyzing the collective behavior [60], [136], team tac-
tics [106], [109], and overall performance [135] in team sports.
When it comes to visual analysis, the focus lies on presenting
the positional relationships [60], [106], [109] and movement
trajectories [135], [136] among multiple individuals. Through
visual analysis, one can observe and analyze team tactics,
defensive strategies, and offensive organization within team
sports. This holds crucial significance for training, tactical
planning, and strategic formulation in team sports, ultimately
enhancing overall collaboration and performance levels. How-
ever, how to precisely detect, present, and summarize team
sports strategies becomes a challenge due to the rapidly
changing motion trajectories and the difficulty in tracking
moving targets.

To effectively summarize the team tactics, Wu et al. [148]
(Fig. 18(F)) propose a visual analysis system, named ForVizor,
to help users explore the team movements of soccer matches.
They utilize the proposed automatic algorithms to detect
the team movements automatically. Based on this detected
information, they use multiple linked views such as matrix,
narrative timeline, and pitch to help users dig out the for-
mations and tactics transformation of teams. To visualize
the team movement patterns, Stein et al. [136] (Fig. 18(E))
incorporated movement data into the raw video to monitor
sports patterns in real time. In visualization, the technniques
embed many visualization charts such as heat maps, doughnut
charts, and timeline movement paths into videos to present
the dominant regions, pass distances, players’ movements, and
players’ reactions in soccer matches.

C. Entertainment Video

Entertainment video generally has distinct themes and rich
narrative content. The datasets of entertainment videos are
generally movies [10], [48], [154], TV programs [71],
news [51], [55], etc. obtained from online platforms. The
duration of these videos scales from 10 minutes to 120 min-
utes. Such videos have high-definition video information and
audio information. Therefore, this type of video data is usually
high-quality and multimodal. Regarding the analysis of enter-
tainment videos, existing research primarily concentrates on
summarizing and comprehending medium-sized entertainment
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Fig. 19. (A) Kurzhals et al. [48] performed semantic segmentation of the
movie’s content to conduct a multi-level semantic inference analysis of the
video content. (B) VIAN [154] summarized the video content from the aspect
of color. (C) Markus et al. [55] summarized the news topics by extracting the
text in news videos. (D) Renoust et al. [51] explored patterns of association
between politicians by face tracking.

videos with compact content. This analysis assists users in
enhancing their video-watching efficiency or providing tailored
recommendations for captivating segments. In this section,
we mainly review the visual analysis work based on movie
videos [10], [48], [71], [154] and news videos [51], [55],which
represent the two most prevalent types of entertaining videos.

Movie video is an artistic creation that revolves around
the elements of storytelling, performances, and visual effects.
Specifically, these contents are reflected in the style, theme,
emotion, character relationships in the movie, as well as the
director’s creative techniques and intentions. However, the
perception of art forms such as movies tends to be subjective,
which poses challenges in precisely defining analysis tasks and
establishing quantifiable evaluation criteria for movie videos.
Furthermore, movie videos encompass various multimodal
information, including images, audio, and scripts, thereby
amplifying the complexity of data and enhancing the diffi-
culties encountered in visual analysis. To address these issues,
the existing techniques have been carried out such as scene
analysis [48], [71], emotion recognition [10], shot composi-
tion analysis [11], and visual effects analysis [154], enabling
a comprehensive understanding and assessment of movies.
Existing visualization techniques are introduced to explore
movie videos from two major aspects: movie content [10],
[48], [71] and movie styles [11], [154].

Movie content can be summarized into four key elements:
when, where, who, and what. Existing research often analyzes
the movie content from one or several specific elements. Emo-
tionMap [10] proposes EmotionDisc to model emotions based
on the emotion detection techniques of face, text, and audio.
Additionally, it designs a compact map-style visualization
that integrates the information consisting of time sequence,
character emotions, events, and the correlations between items
to summarize the semantic structure of the movie. In order
to analyze the movie from a more macro perspective, some
works analyze the movie content in scenes [48], [71]. Kurzhals
et al. [48](Fig. 19(A)) perform semantic segmentation of the

movie content based on integrated multimodal information
(including script, images, scripts, and subtitles) to conduct
multi-level semantic analysis of the video content. In visu-
alization, their work provides a scalable timeline that allows
users to freely filter and refine the presented video granularity.

Movie style includes shooting techniques such as the appli-
cation of color and scene transitions. To analyze movie style
from the perspective of color, VIAN [154] (Fig. 19(B))
combines background segmentation techniques with human
perception of color to assess the shooting style and aesthetic
quality of the movie. VideoForest [11] generates session-based
video summaries by leveraging bullet screen data and video
frame information, and enable the exploration of shooting
techniques and filter styles. In the visual design of sum-
maries, it introduces a forest-themed visualization approach
to metaphorically showcase movie scenes and keyframes.

News videos has characteristics of concise narratives and
clear content structures. The focal points of news video
analysis often encompass aspects such as accuracy, objectivity,
reporting style, and news value, aimed at evaluating the quality
and credibility of news reporting. Analyzing news videos
allows for the exploration of content, themes, perspectives, and
linguistic styles conveyed in news reports, as well as assessing
the impact and effectiveness of news dissemination. This
analysis may involve techniques such as speech recognition,
sentiment analysis, keyword extraction, and event detection.
Compared to movies, news videos employ simpler shooting
techniques, with camera angles switching among a few fixed
positions. Based on the specific news scenario, news videos
can be categorized as studio news [55] and on-site news [51].

For studio news, the video scene is relatively stable, and key
information may be reflected in text and audio information.
Markus et al. [55] (Fig. 19(C)) employ optical character
recognition technology to extract subtitle and title informa-
tion from video images. They then utilize topic extraction
techniques to semantically cluster news in a collection of
videos. Moreover, they project news data using topic-based
vectors to compare the similarities and dissimilarities between
different topics. Additionally, they utilize a multi-level timeline
to summarize the evolution patterns of news content at varying
scales, facilitating user filtering and querying. For on-site
news which is recorded in real scenes, the characters in the
video may be the focus of the news. Renoust et al. [51]
(Fig. 19(D)) propose a political analysis visualization system
for a large-scale news video archive based on facial tracking.
This system utilizes facial detection and tracking techniques to
construct a political network, aiding users in gaining a deeper
understanding of political interactions and media phenomena
through four levels of abstraction: time segments, networks,
timeline, and facial tracking within the videos. Moreover,
in terms of visualization, this research examines the pat-
terns of appearances and relationships among politicians in a
graph-based visualization, enabling users to selectively explore
individual network connections.

D. Education Video

Education videos contain a wealth of contextualized and
unstructured information. The datasets of education videos
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Fig. 20. (A) Yadav et al. [74] designed a dynamic timeline to support
nonlinear navigation. (B) Monserrat et al. [81] extracted the concepts in
blackboard-style instructional video. (C) EmoCo [9] analyzed the consistency
and evolution of emotions in presentation video. (D) Wu et al. [49] analyzed
the concordance between verbal and non-verbal in presentation video.

are generally presentation videos [8], [9], [101] and course
videos [74], [79], [81] obtained from internet platforms
such as YouTube and MOOC. The duration of these videos
scales from 10 minutes to 90 minutes. The main purpose
of analyzing these education videos is primarily in swifting
knowledge acquisition and enhancing the quality of online
teaching. These videos typically often have high-definition
visuals and audio components, necessitating a comprehensive
analysis encompassing textual, auditory, and visual content.
In this section, we further categorize these educational videos
into course videos [73], [102] and presentation videos
[9], [101].

Course video analysis techniques focus primarily on the
instructional content [74], [79], [81],and learning behavior
analysis [102], [155], [156], [157]. The instructional content
in course videos often exhibits a monotonous and repetitive
nature, which may lead to reduced student concentration and
diminished patience. Students are required to repetitively seek
out and view specific video segments in order to enhance their
comprehension of the knowledge points. To promote efficient
browsing and learning, some works [47], [79], [81] extract
keywords and keyframes from videos for navigation. Yadav
et al. [74] (Fig. 20(A)) propose a multi-dimensional nonlinear
video navigation tool that utilizes blackboard information and
audio data. Regarding visualization, it employs the dynamic
time-aware word clouds and key point timelines to facili-
tate users in precisely locating specific points of interest or
key segments within the video. In order to obtain semantic
information to navigate, Monserrat et al. [81] (Fig. 20(B))
extract the concept of geometric shapes, and formulas from
blackboard-style education videos and create a summary
image of video concepts as a navigation interface, enabling
users to directly navigate to corresponding video frames of
specific concepts. Truong et al. [47] utilize principles from
cognitive psychology on how humans perceive, remember,

and communicate event structures to automatically extract
a two-level hierarchical overview of makeup instructional
tutorials. They consider facial elements as high-level events
while treating actions as low-level micro-objects.

Some studies are dedicated to conducting learning behavior
analysis of students while they watch course videos. These
studies [102], [155], [156] devote to gain insights into stu-
dents’ behavioral patterns and learning modalities, with the
aim of evaluating pedagogical effectiveness and uncovering
learning difficulties of the course video, thus facilitating a
comprehensive understanding of students’ learning behaviors
and individual preferences. The VisMOOC [156] analyzed
video clickstream data on MOOC platforms. Based on content-
based views, it displays the time variation of the total number
of each type of click action on the video timeline to help
MOOC instructors analyze user learning behavior. However,
discovering the utilization pattern of a massive number of
videos from learning log data remains a significant challenge.

Presentation videos demand learners to engage in detailed
analysis and exploration, aiming to uncover hidden insights,
such as humor skills or the establishment of emotional
resonance within the presentation. Nonetheless, the dig of
presentation often suffers from a lack of precise definitions
and uniform evaluation criteria, which frequently confuse
novices delving into presentation content. In order to solve
these problems, some works use visual analysis techniques to
help users understand the complexity of presentation videos.
The main analysis contents include language style [8], body
posture [9], [49] and personal emotions Tendency [101].

To learn the expression skills of humor, Dehumor [8] is
designed to analyze the language style of the speaker from
two aspects: (1) the interaction of vocal delivery and script
information with inline annotations. (2) the contextual linking
of concepts conveyed in the presentation with a context-linking
graph. However, this work analyzes video only from audio
data and ignores image information. Some works analyze
image information of gestures and emotions in presentation
expression [9], [49], [101]. EmoCo [9] is proposed to analyze
the consistency and evolution of multimodal emotions in
presentation videos (Fig. 20 (C)). They extract the face and
detect the emotion of the speaker. In order to help users with
multi-level analysis and exploration, this work allows users
to analyze the multimodal sentiment (i.e., the sentiment of
text, audio, and face) in presentation videos from three levels
(video-level, sentence-level, and word-level) for comparative
analysis. In visualization, this work designs a novel Sankey
diagram to express the flow of emotions between different
modalities. Furthermore, Wu et al. [49] (Fig. 20 (D)) analyze
the concordance between verbal and non-verbal information
in a collection of presentation videos. On the basis of this
distilled information, they guide users to explore the video col-
lection from three levels: video collections, video comparison
in time series, and detail of a specific video. They utilize an
innovative glyph to represent the postures in the presentation
videos, along with employing scalable timeline navigation to
facilitate users in conducting interactive exploration at varying
levels of granularity.
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VI. DISCUSSION AND OUTLOOK

In this section, we discuss video visualization and visual
analysis from four aspects including scalability, uncertainty
and evaluation, multimodal analysis, and real-time analysis.

A. Scalability

With the rapid expansion of video data, video visualization,
and visual analysis face significant challenges. Video data
has the characteristics of substantial volume, redundancy, and
complexity. Therefore, visual confusion often occurs during
the visual mapping process. To address this issue, numerous
existing research efforts employ frame sampling [158] or
keyframe extraction [65] during the data processing stage.
In the visual design, visual encoding techniques [101], [159]
are widely employed to convey semantic information in the
videos. Selecting appropriate graphic symbols to express
video features can effectively minimize visual clutter and
confusion. In the realm of visualization interaction, various
approaches such as filtering, querying, and scaling are exten-
sively employed to facilitate scalable analysis.

However, the current visual analysis techniques still have
limitations in scalability. Their analytical capabilities lim-
ited to video content of up to two hours (as shown in
Fig. 17). This phenomenon highlights the challenges in visual
analysis of long video content. Additionally, the issue of
balancing information presentation and visual space utilization
remains insufficiently explored. Within a limited screen scope,
determining the granularity and information density of video
content that best facilitates human exploration remains an
open question. These unresolved challenges also motivated
us to undertake this review study. Future work could explore
the development of more efficient methods for high visual
throughput image representation, abstract representation of
semantic information, and spatiotemporal integrated visual
representation, aiming to compress the high-density pixel
information in video data. Additionally, it might consider
progressively expanding the presentation of information based
on human intent to prevent overwhelming users at the outset.

B. Uncertainty and Evaluation

Uncertainty in video analysis typically consists of two
aspects: (1) Uncertainty in algorithms: Current efforts aim
to construct a visual analysis system that integrates machine
intelligence with human perceptions. However, machine learn-
ing algorithms are often perceived as a “black box” by
developers of visualization tools and users [116], [117],
making the deployment in practical applications prone to unex-
pected errors. Currently, there is a lack of in-depth research on
enhancing users’ trust in the results of video analysis models.
To address this issue, interactive analysis and feedback should
be introduced to incorporate human insights into the process
of improving model outcomes.

(2) Uncertainty in data: Video data may contain noise,
missing information, redundancy, or errors, which can intro-
duce uncertainty in the analysis and interpretation of video
content. In addition to efforts to repair and enhance uncer-
tain data, visualization techniques can assist in addressing

issues related to low-quality data. For example, conveying
uncertainty information to users through visual representations
such as uncertainty ranges, confidence charts, and fuzzy sets
can facilitate accurate decision-making. Furthermore, visual
analytics techniques can present the key factors and influences
contributing to uncertainty, thereby promoting a deeper under-
standing of the analysis results.

The uncertainty creates challenges for accurately analyzing
and understanding videos. Existing research methods [45],
[108] mainly focus on pre-defined visual analysis of video
information in specific domains, and transform uncertain
video semantic information into specific analysis tasks. How-
ever, we still have the opportunity to explore personalized
and customized exploration mechanisms to deal with more
uncertainties. For example, the ability to analyze semantic
uncertainty in videos can be further improved by employing
methods such as gesture-based video information retrieval and
context-based pattern mining.

Additionally, effective evaluation methods can help in
understanding and quantifying these uncertainties, which con-
tributes to the enhancement of the effectiveness and credibility
of video visual analysis techniques. The comparative analysis
in Fig. 2 reveals that little research regarding the performance
evaluation of algorithms, reflecting the evaluation of video
visualization techniques focuses on the effectiveness of the
human-centered analysis process rather than the performance
of quantitative metrics. Furthermore, since the algorithms used
in video visualization techniques are often closely related to
their application contexts, it becomes particularly challenging
to establish a universal standard or metric to measure the
performance of different algorithms.

C. Multimodal Analysis

Multimodal data analysis has emerged as a prominent
research topic in the field of video analysis [160], [161].
In existing work, semantic-level alignment and fusion of
multimodal data constitute the primary methods employed for
multimodal data processing. Such as integrating information
from different modalities onto a common attribute dimension
for alignment [9], or directly utilizing multimodal models
for event or object recognition. Regarding visualization, prior
research has presented simultaneous visual representations of
diverse modalities, employing distinct visual symbols to depict
the characteristics of each modality [7]. Futhermore, visual-
ization forms such as Sankey diagrams and association graphs
have been employed to reveal distinctions and consistencies
among modalities.

Additionally, with the emergence of large language mod-
els such as ChatGPT [162], the field of computer vision
and multimodal analysis has experienced significant advance-
ments [163], [164]. These large models incorporate robust
semantic understanding and expressive capabilities which
brings opportunities for the combination of visualization tech-
niques and automatic vision techniques. Particularly, these
techniques stimulated research on previously challenging
tasks [165]. For example, automated models extract high-level
semantic information from videos, while visualization tech-
niques can show the relationship between questions and
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answers through intuitive visual representations to help users
better understand the basis and reasoning of the answers.

D. Real-Time Analysis

Current visual analytics [6], [106] efforts primarily focus
on modeling historical video streams, transforming unstruc-
tured video data into structured formats to facilitate further
pattern exploration. In contrast to offline analysis, analyzing
online video streams aims to enable real-time processing and
analysis of video streams, extracting valuable information for
prompt decision-making [1]. However, this is a challenging
task. On one hand, there is a high demand for real-time
model performance. The diversity and complexity of video
data further amplify the challenges associated with algorithm
design and optimization. On the other hand, owing to the
dynamic nature of online videos, upcoming video streams
may contain content that is irrelevant to the current analysis
task and filled with unknown variables, rendering predictions
difficult. There is an urgent need to develop methods for
more efficient processing and summarization of dynamic video
stream data. Moreover, effectively presenting vast historical
data, real-time updated data, and their interconnections within
the field of visual analytics requires further research and in-
depth exploration.

VII. CONCLUSION

In this paper, we review the visualization and visual ana-
lytics for video data and provide a comprehensive overview.
We first provide a design space based on the video visu-
alization process. We then review and classify these papers
from two dimensions: visual analysis tasks and applications.
Specifically, visual analysis tasks are further divided into
five types: video summarization, video content understanding,
video anomaly detection, video editing, and video enhance-
ment. The application scenarios are divided into the following
four categories: surveillance, sports, entertainment, and edu-
cation. In addition, our paper discusses the challenges and
future research trends. This survey aims to provide insights to
practitioners in this research direction and to help them better
understand the role of visualization techniques in the process
of exploring and analyzing video data.
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