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Video Visualization and Visual Analytics: A
Task-Based and Application-Driven Investigation

Wang Xia, Guodao Sun, Tong Li, Baofeng Chang, Jingwei Tang, Gefei Zhang and Ronghua Liang

Abstract—Video data refers to digital information in the form
of a series of frames or images representing continuous motion
captured by a video recording device. In various domains such
as security, sports, education, and entertainment, a significant
amount of video data is generated and stored daily. However,
analyzing these videos manually is challenging due to their intrin-
sic characteristics, including large-scale, redundancy, contextual
dependencies, and multimodality. Consequently, researchers have
extensively explored visualization techniques to address these
complexities. In this investigation, we review the state-of-the-art
techniques in video visualization and visual analysis. Initially, we
provide an overview of the design space for video visualization
and visual analysis techniques. Subsequently, we organize and
classify these techniques based on visual analysis tasks and
application scenarios, providing detailed descriptions within each
category. Drawing upon a comprehensive review of existing
research, we provide a critical evaluation and propose potential
opportunities for future research. Additionally, we have devel-
oped a web-based survey browser for convenient exploration of
our created classification framework and the associated scholarly
articles (https://zjutvis.github.io/VOVideo/).

Index Terms—Video visualization, video analysis, visual ana-
lytics, video data, survey

I. INTRODUCTION

The exponential expansion of video data is a direct con-
sequence of the rapid advancements in digital technology.
Various domains, encompassing security [1]–[3], sports [4]–
[6], education [7]–[9], and entertainment [10], [11], bear
witness to the generation and storage of substantial volumes of
video data daily. Consequently, there is an urgent demand for
browsing, exploring, and analyzing video data in real world.

However, the exploration and analysis of video data en-
counter two primary challenges. Firstly, the manual review of
videos is time-consuming and labor-intensive. Secondly, video
data encompasses a wealth of information, encompassing mul-
timodal information and contextual association, thereby pre-
senting challenges for video analysis and exploration [12]. To
address the above issues, the field of computer vision has ex-
tensively researched and proposed a plethora of methods [13],
[14]. Particularly in recent years, automated approaches such
as object detection [15], [16], object tracking [17]–[19], and
image segmentation [20]–[22] for video data have significantly
enhanced the efficiency and precision of video analysis. Driven
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by the automation techniques, video analysis is gradually tran-
sitioning from manual review to machine-based scrutiny [23]–
[25]. However, directly applying advanced automated meth-
ods to real-world video browsing and analysis encounters
limitations posed by following critical issues: (1) the “black
box” nature of automated algorithms hinders interpretability
and transparency in decision-making processes. (2) machine-
generated outcomes are typically presented in a discrete and
fragmented manner, lacking meaningful insights that end-
users expect for. In conclusion, the cognitive bridge between
machines and humans remains incomplete.

To meet the demands of human-centric video browsing
and analysis, visualization technique [4], [26]–[30] assumes
the role of a bridge between automated video processing
and human perception. The application of visualization and
analysis techniques in video prioritizes human perception and
experience, utilizing machines as supportive tools to assist
users in viewing video data. The primary objective is to
alleviate the analytical burden on video viewers and enhance
their understanding of video information. The entire process
(as depicted in Fig. 1) starts with the raw video data process-
ing, followed by semantic-level modeling of the video data
which abstracts low-level features into high-level semantic
information. Finally, through the intuitive visualization of
video information and a series of interactive operations, video
visualization and visual analysis can be achieved.

There have been some surveys summarizing the research
on video visualization and analysis techniques in the visual-
ization community. Earlier surveys examined the literature on
video visualization and visual analysis techniques [31]–[33].
However, these surveys lack awareness of the latest research
achievements. In recent years, some video visualization-related
surveys have focused on specific analysis tasks [34]–[37],
application scenarios [38]–[41] or interaction techniques [42].
There are also papers that cover a broader range of visu-
alization and visual analysis techniques for both image and
video datasets [28]. For example, Afzal et al. [28] conducted
a review of visualization techniques for images and videos.
Their research primarily focused on exploring the overlaps
and differences between computer vision and visualization.
They classified articles from various perspectives, including
visual interaction, visualization, machine learning methods,
data scale, and application domains. During the analysis of
the literature, their classification method involved a large
number of categories, without providing specific descriptions
of the roles of visualization and visual analysis within each
category. Compared to this survey, our research focuses on
the analysis of visualization and visual analysis techniques.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2024.3423402

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Texas A M University. Downloaded on July 25,2024 at 17:00:41 UTC from IEEE Xplore.  Restrictions apply. 



2

In the analysis process, we employ a multilevel approach to
literature analysis, with further subdivisions according to each
major category, to enhance the structure of the investigation
and provide a clear framework. The multilevel classification
framework provides readers with a path from overview to
detail in the field of video visualization. This method not only
help readers understand and locate various video visualization
techniques in this survey, but also conduct comparative analy-
sis between these techniques. Additionally, we discuss in depth
how visualization techniques relate to video data in terms
of data characteristics, research value, research challenges,
and analysis techniques. To the best of our knowledge, there
is no state-of-the-art review dedicated specifically to video
visualization and visual analysis techniques.

In this survey, we categorize, summarize, and compare state-
of-the-art video visualization and visual analysis techniques in
multi-dimension, which tend to provide a systematic review.
By collecting, filtering, and analyzing relevant papers, we
initially provide a description of the design space within
the domains of video visualization and visual analysis in
Section III. The content of this part can also be seen as a
terminology introduction. According to this design space, we
develop the description of different research. Subsequently, we
organize and categorize existing papers from the perspectives
of visual analysis tasks and application scenarios in Section IV
and V. Regarding visual analysis tasks, we specifically discuss
existing visual analysis techniques in different tasks and elab-
orate on the limitations and open problems. In the realm of
application scenarios, we provide a detailed description of spe-
cific scenarios and the corresponding visualization techniques.
Finally, we engage in a discussion regarding the prominent and
challenging research directions. To facilitate the investigation
of our devised taxonomy and reviewed methodologies, we
have developed a web-based survey browser. In summary, the
contributions of this paper are as follows:

• We collect and summarize 129 typical papers in the
research field of video visualization and visual analysis
to provide a review.

• We propose a taxonomy from the perspective of analysis
tasks and application scenarios on video visualization
and visual analysis to offer readers a comprehensive and
systematic overview.

• We offer a comprehensive and in-depth examination of
the current challenges in this field, and propose potential
opportunities for future research.

• We develop a web-based survey browser
(https://zjutvis.github.io/VOVideo/) to facilitate the
exploration of our taxonomy and associated papers.

II. SURVEY METHODOLOGY AND TAXONOMY

A. Survey Methodology

The objective of this survey is to provide an overview
of the existing techniques of video visualization and visual
analysis. In order to comprehensively review the existing
papers in this field, we employed two primary literature
retrieval methodologies: search-based and citation-based. The
search-based approach was designed to initiate a preliminary

exploration of video visualization and analysis techniques. We
utilized two queries (“video” AND “visualization”; “video”
AND “analysis”) with the anticipation of covering all papers
related to both video and visualization. Our main sources
of papers were highly influential conferences and journals
(Conferences: IEEE VIS, CVPR, ECCV, ICCV, ACM CHI,
EuroVis, and PacificVis. Journals: IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), IEEE
Transactions on Image Processing (TIP), IEEE Transactions on
Visualization and Computer Graphics (TVCG), IEEE Trans-
actions on Multimedia (TMM), IEEE Computer Graphics and
Applications (CG&A), and Computer Graphics Forum (CGF).)
The citation-based approach starts with the core techniques in
this field and subsequently expands the scope by checking
citations and references.

Subsequently, we proceeded to read through the titles of
each paper to choose papers that potentially related to video
visualization. If a title did not explicitly describe the relevance
to our surveyed direction, we further examined abstracts and
main text to determine its inclusion in our survey. The inclu-
sion criteria were as follows: (a) the paper involved visualiza-
tion of video data, and (b) the paper involved exploration and
analysis of video data while utilizing visualization techniques.
Within the literature collection process, we restricted the time
range from 2008 to 2023. Ultimately, we obtained 129 papers
specifically focused on video visualization and visual analysis.

Additionally, we conducted a statistical analysis of these
papers from dimensions such as journals, conferences, and
years (as illustrated in Fig. 3). The statistical information
demonstrates the substantial presence of this research direc-
tion within top journals and conferences in the visualization
domain. Additionally, there has been a continuous increase in
research efforts, particularly in recent years. This growth can
be attributed to the advancements in deep neural networks,
which have propelled the progress of computer vision tech-
niques and provided the basis for the effective implementation
of video visualization and visual analysis. At the same time,
against the rapid advancements in computer vision, there is an
urgent need for visual analysis to serve as a bridge facilitating
effective communication between humans and machines.

B. Taxonomy

To provide an overview of all the papers from various
dimensions and generate a more non-mutual classification, we
first conducted content summarization and extracted key infor-
mation from each paper. We collected information including
motivation, challenges, contributions, datasets, data processing
techniques, target users, visualization techniques, interactive
methods, and future work. This information was stored in an
Excel table for easy querying and filtering. We then formulated
this information into a design space. In particular, we drew
on traditional visual analysis workflows and described it as
three key components: data, visualization, and interactions.
Taking into account the characteristics of video data, we
refined each visual analysis component with subcategories
(details of the design space are discussed in Section III).
The design space can also be regarded as a terminological
explanation of the visual design process, which can provide
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Fig. 1. A general pipeline of video visualization and visual analysis includes these four aspects: (1) Data scale consists of frame, shot, scene, video. (2)
Automated video analysis. (3) Visualization consists of chart, timeline, scatter, graph, sankey, 3D cube. (4) Interaction consists of filter/query, brushing,
emphasis, scaling.

readers with a structured and comprehensive understanding
of these papers. This is also beneficial for researchers who
lack a background in video visualization, as it facilitates a
comprehensive understanding of the role of each term in the
field of video visualization. It enables researchers to more
deeply comprehend the principles and methodologies of var-
ious techniques throughout the visual design process. During
the review of the literature, we utilized selected terms from
the design space to summarize existing techniques. Moreover,
on our web-based survey browser, researchers can filter and
search for articles based on the terms in the design space.

The design space of each paper is determined by the
analysis tasks and application domains. We initially classified
visual analysis tasks in existing work into four categories
based on their appearance frequency: video summarization,
video anomaly detection, video content understanding, and
video editing/enhancement. However, during the classification
process, some authors raised concerns about merging video
editing and enhancement into a category, as they have sig-
nificant differences in the context of visualization and visual
analysis tasks. After thorough discussions with other authors,
we reached a consensus and separated the original category
into two distinct categories: video enhancement and video edit-
ing. Additionally, we summarized four common application
scenarios: surveillance, sports, entertainment, and education.

In addition to describing the papers from the perspectives
of visualization workflows, analysis tasks, and application
scenarios, we have also summarized the evaluation section of
the papers to compare the technique performance. Comparing
the completeness of their evaluation can reveal the practical
utility in different application scenarios and the capabilities
to meet specific user requirements. To enable performance
comparison within the same framework, we utilized Isenberg
et al.’s [43] adaptation of Lam et al.’s taxonomy [44] to
characterize visualization evaluation forms. We adjusted the
forms of evaluation according to the area of our survey.
Ultimately, four categories were retained: “Understanding

Environments and Work Practices”, “Visual Data Analysis
and Reasoning”, “User Performance”, “User Experience”, and
“Algorithm Performance”.

Once the major description dimensions of papers were
determined, we proceeded to code all the papers based on these
dimensions. Note that the design space is divided into a fine-
grained categorization, with each paper classified based on one
or more design choices across various dimensions. In contrast,
the dimension of analytical tasks or application domains is
broader, reflecting the key objectives and research focus of
the papers. Therefore, we code each paper with one specific
task and scenario to assist readers in understanding the major
contribution of each paper, which enhances the readability
and practicality of this survey. To ensure the reliability of
the coding process, each paper was coded by at least two
authors. As a result, three authors independently coded 50
papers and engaged in discussions to resolve any coding
ambiguities, aiming to enhance the accuracy and credibility
of the coding. To provide a comprehensive presentation, we
selected the most cited 73 papers from all 129 papers to display
the coding results (Fig. 2). We considered the distribution of
papers in dimensions during the selection process and balanced
the number of papers in each category. In addition, we also
pay attention to the year distribution of these papers to ensure
that the papers in different years are covered.

The remaining sections of the paper are organized as
follows. In Section III, we introduce the design space used
to describe visualization design process. Then, in Section IV,
we provide a comprehensive overview of the state-of-the-
art techniques for each visual analysis task. In Section V,
we present an overview of common application scenarios of
video visualization to offer intuitive guidance. Finally, we
discuss the challenges and opportunities in this research area.
Through this organization, we anticipate that this survey will
provide researchers and practitioners with a comprehensive
understanding of existing work from multiple perspectives.
The structure of our survey is depicted in Fig. 4.
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Botchen et al. [88] 2008 1 1 1 1 1 1 1

Romero et al. [89] 2008 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

Liu et al. [139] 2009 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1

Zhang et al. [77] 2010 1 1 1 1 1 1 1

Adcock et al. [78] 2010 1 1 1 1 1 1

Chen et al. [153] 2010 1 1 1 1 1 1

Piringer et al. [54] 2012 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1

monserrat et al. [81] 2013 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1

Meghdadi et al. [53] 2013 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1

Hoferlin et al. [86] 2013 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1

Legg et al. [60] 2013 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1

Kurzhals et al. [94] 2013 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1

Kim et al. [82] 2013 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1

Kim et al. [73] 2014 1 1 1 1 1 1 1 1

Wang et al. [96] 2014 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1

Dietrich et al. [152] 2014 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1

Pavel et al. [76] 2014 1 1 1 1 1 1 1

Al-Hajria et al. [75] 2014 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1

Hamid et al. [85] 2014 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1

Polk et al. [59] 2014 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1

Liao et al. [117] 2015 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1

Lowe et al. [144] 2015 1 1 1 1 1 1

Biswas et al. [79] 2015 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1

Chen et al. [155] 2015 1 1 1 1 1 1 1 1 1 1 1 1 1

Duffy et al. [93] 2015 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1

Jang et al. [52] 2015 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1

Sun et al. [56] 2016 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1

Kurzhalsa et al. [48] 2016 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1

Renoust et al. [51] 2016 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1

Biresaw et al. [143] 2016 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

Ma et al. [61] 2016 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1

Ma et al. [63] 2016 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1

Shi et al. [155] 2017 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1

Wu et al. [57] 2017 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1

Wu et al. [49] 2018 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1

Wu et al. [148] 2018 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1

Samrose et al. [72] 2018 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1

Chen et al. [102] 2018 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1

Halter et al. [154] 2019 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1

John et al. [55] 2019 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1

piazentin et al. [119] 2019 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1

Huber et al. [46] 2019 1 1 1 1 1 1

Chan et al. [92] 2019 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1

AilieFraser et al. [80] 2019 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1

Fan et al. [115] 2019 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1

Andrienko et al. [135] 2019 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1

Ma et al. [10] 2020 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1

Zeng et al. [3] 2020 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1

Guo et al. [108] 2020 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1

Tang et al. [2] 2021 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1

Sun et al. [45] 2021 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1

Li et al. [146] 2021 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1

Ye et al. [147] 2021 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1

Xie et al. [109] 2021 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1

Chen et al. [126] 2021 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1

Deng et al. [128] 2021 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1

Soure et al. [98] 2021 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1

Chu et al. [137] 2021 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1

Chung et al. [127] 2021 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1

Lan et al. [105] 2021 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1

Wu et al. [133] 2021 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

zeng et al. [7] 2022 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1

Liu et al. [27] 2022 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

Chen et al. [6] 2022 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1

Swift et al. [84] 2022 1 1 1

Lin et al. [5] 2022 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1

Seebacher et al. [106] 2023 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1

Chen et al. [4] 2023 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1

Wong et al. [26] 2023 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1

Wu et al. [99] 2023 1 1 1 1 1 1 1 1 1 1 1 1 1 1
He et al. [100] 2023 1 1 1 1 1 1 1 1 1 1 1 1

Data

Type
Visualization Interactions

Analysis

Tasks
Evaluation

Fig. 2. We list the most cited papers each year and the latest paper in each
application. We summarize them based on these four dimensions: data, visual-
ization, interactions, and analysis tasks. Data type: image-based, audio-based,
text-based, sensor-based. Visualization: chart-based, graph-based, timeline-
based, projection-based, glyph-based, sankey-based, 3D-based. Interactions:
filter, scaling, emphasis, sketch. Analysis tasks: video summarization, video
content understanding, video anomaly detection, video augmentation, and
video editing. Evaluation: understanding environments and work practices
(UWP), visual data analysis and reasoning (VDAR), user performance (UP),
user experience (UE), and algorithm performance (AP).
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Fig. 3. Left: number of papers over the years. Right: statistics on the number
of papers in different journal.

III. DESIGN SPACE

In this section, we introduce a design space to describe
the characteristics of the visualization design process. As
outlined in Section II, the foundation of this design space
is structured around three primary dimensions motivated by
the visual analysis pipeline: “data”, “visualization”, and “user
interactions”. These dimensions encompass the core compo-
nents of the visualization pipeline. By classifying research
papers according to these dimensions, we further refine the
design space by identifying and describing commonly utilized
subcategories within each dimension. This design space offers
a comprehensive and detailed description of research papers,
enriching researchers’ understanding of video visualization
techniques through a visual analysis process-based perspective.

A. Data Scale
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Frames: Video is composed of a series of con-
tinuous frames, and each frame represents a still
image within the video. Frames are the smallest
unit of video data. Tang et al. [2] adopted the
frame as the fundamental unit for risk assessment
of e-commerce videos, facilitating auditors in

achieving efficient scrutiny of non-compliant video modera-
tion. Sun et al. [45] utilized the transitions between frames to
mine key patterns in abnormal fragments.
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Shots: A shot is a single event that can be
considered as a semantic unit, such as an action,
a sentence, etc. Shots can be analyzed to mine
patterns and generate insights of a particular
entity or scene. For example, Huber et al. [46]
introduced a lens-oriented video editing tool,

serving as a creative aid for aspiring filmmakers to produce
videos of remarkable caliber and mesmerizing allure. Truong
et al. [47] divided the makeup steps in the video into multiple
shots based on the detection of key actions, and conducted
hierarchical analysis.
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Scenes: A scene refers to a collection of
shots captured within a specific temporal inter-
val, where the camera’s position and perspective
remain predominantly unchanged. Kurzhals et
al. [48] used scripts to conduct scene segmen-
tation for movies, leveraging multimodal cues

to assist viewers in comprehending the plot dynamics and
narrative transitions of the movie. Sun et al. [11] divided the
scenes based on the Danmu conversation timeline and formed
a tree-like visual summary for each scene.
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 Section 4: Analysis Tasks

 Section 5: Applications

Section 1: Introduction 

Section 2: Survey 
Methodology and Taxonomy

• Video Visualization & ML
• Challenges
• Motivations
• Contribution

• Survey Methodology
• Taxonomy

Section 3: Design Space
• Data Scale
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• Interaction Technique

Section 6: Discussion 
       and Outlook

• Scalability
• Uncertainty
• Multimodal Analysis
• Real-time Analysis

Section 7：Conclusion 
• Summary
• Future Trends 

Sequence feature-
based

Fig. 4. Overall organization of our survey paper. Section I is the introduction. Section II provides the methodology and taxonomy of our survey. In Section III,
we introduce the design space used to describe the visualization design process. Then, in Section IV, we provide a comprehensive overview of the current
state and the latest solutions for each visual analysis task. In Section V, we present an overview of common applications of video data to offer more intuitive
guidance for practitioners in visualization and visual analysis. Finally, we discuss the challenges and opportunities in Section VI. Section VII is the conclusion

Video: A video is organized by multiple
scenes, encompassing various shots and an abun-
dance of frames. Extracting and processing fea-
tures at the video level can be applied to tasks
such as video classification, video summariza-

tion, video retrieval, and more. For example, Chen et al. [48]
extracted and visualized compact summaries of storylines for
efficient representation and fast overview of TV programs. Wu
et al. [49] achieved visual analysis of speech video style by
converting speech videos into vectors containing multimodal
information and projecting them into two-dimensional space.

B. Visual Representation

Chart-based visualizations: Visualization
charts, such as bar charts, pie charts, and stacked
charts are often used to show the distribution
of video features. For example, Zeng et al. [3]
used stacked charts to show the percentage of
students’ emotions in course instruction. Li et

al. [50] employed bar charts to represent the risk levels of
cheating among students during online exams.

Timeline-based visualizations: The timeline
is a visualization form that best matches the char-
acteristic of the video sequence, which presents
the abstract information or semantic features
extracted from the video in a chronological order.
These features are usually represented in terms

of color, texture, and shape. For instance, EmotionCues [3]
employed multiple colors in a timeline to encode multimodal
emotional features, representing the temporal changes in the
speaker’s emotions within the video. EmoCo [9] employed a

multi-level timeline visualization to facilitate the exploration
of speech content from the sentence level to the word level.

Scatter-based visualizations: Scatter-based
visualizations are typically used to project data
extracted from videos, where each point can rep-
resent a frame or an action. The scatter form can
assist the user in understanding the distribution
of the video content, such as exploring clusters of

frames with similar features or anomalies. For example, Zeng
et al. [7] projected the speech content and gesture content
from speech videos separately and uses skeleton-based glyph
to represent gestures.

Graph-based visualizations: Graph-based vi-
sualizations are commonly used to represent re-
lationships between frames, objects, or metadata
within videos. They enable users to gain insights
and analyze the structure and relationship within
the video. For example, Renoust et al. [51] rep-

resented the relationships between politicians in news videos
using graph-based visualization, assisting users in discovering
patterns of political connections among public figures. Jang et
al. [52] utilized a node-link diagram to represent the transitions
between posture clusters, where each node visualizes a posture
using a skeleton-based glyph.

Sankey-based visualizations: Sankey-based
visualization forms are often used to show the
relationship between different modal information
or the hierarchical relationship between different
fine-grained information in a video. For example,
Wu et al. [49] summarized the postures, gestures

and rhetoric patterns through sankey diagrams to assist users
in learning expressive techniques for public speaking.
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3D cube-based visualizations: 3D cube is
a form of visualization that restores the two-
dimensional spatio-temporal information com-
pressed by the camera into three-dimensional
space. This visualization can present the original

video content, such as the motion trajectory of the objects in
the video, or the change of eye viewpoint when the human
watches the video. Meghdadi et al. [53] summarize the video
by presenting the pedestrian trajectory in a 3D cube.

C. Interaction Technique

Filter/Query interaction technique allows
users to query and filter video content of inter-
est based on specific criteria, thereby narrowing
down the analysis scope and improving analysis
efficiency. Types of filtering [11], [53], [54]
include frame filters based on similar or unusual

frames, time filters based on video time period selection,
event filters based on specific events, attribute filters based on
frame attributes or object attributes, and object filters based
on moving objects.

Emphasis interaction technique enables users
to highlight and emphasize specific regions or
objects through visual effects like highlighting,
zooming, or other visual techniques [9], [55]–
[58], facilitating the presentation of meaningful
patterns. Users can use this approach to highlight

key information or content of interest and view further details.
Scaling interaction technique enables users

to observe content of interest at different lev-
els of granularity, facilitating their exploration
of patterns and features within the video from
a global overview to local details [50], [54],
[59]. Through scaling, users can explore patterns,

trends, and correlations within the video progressively.
Sketch interaction technique provides users

with a natural and intuitive way to create hand-
drawn sketches, which can be applied to video
annotation, visualization, and analysis [60]–[62].
Through sketchs, users are able to record and
express their thoughts and opinions on video

content in a convenient manner. Ma et al. [63] utilized sketch
interaction to enable users to express and capture their ideas
more naturally without relying on complex menus or toolbars
for annotating keyframes or important segments in videos.

IV. VISUAL ANALYSIS TASKS

In this section, we introduce typical analysis tasks in the
field of video visualization and discuss the existing visual
analysis techniques along with their limitations and open
problems for these tasks. We categorize these analysis tasks
into five major types: Video summarization aims to generate
a concise and compact visualization to represent video content.
Video content understanding focuses on gaining insights
from the contextual information of the video. Video anomaly
detection is employed to identify abnormal patterns in the
video stream. Video augmentation is intended to enhance

the visual effect of the video. Video editing is used for
narrative annotation and editing of the video. Additionally, we
have created a summary table (Fig. 5), which overviews and
navigates the visual analysis techniques from the perspective
of analysis tasks, encompassing these dimensions: data pro-
cessing techniques, visualization and interaction techniques,
as well as application scenarios.

A. Video Summarization
Video summarization aims to present videos in a concise

and compact visual format to convey the key content and main
points. By employing techniques such as content extraction,
keyframe detection, and temporal compression, the length of
the video can be reduced while preserving crucial informa-
tion [68], [69]. As a result, viewers can quickly grasp the entire
video content within a limited timeframe. This technique has
been used in many applications such as surveillance [66], [70],
entertainment [71], and education [64], [65], [72]. According
to the summarization demand in different scenarios, existing
techniques can be divided into three types: navigation-based,
frame-based, and visual encoding-based.

Navigation-based technique is applied in various domains
such as online education [73], [74] and audio visual analy-
sis [75]–[77], emphasizing efficient navigation and browsing
of video data. They aim to assist users in quickly locating
the content of interest and provide a more user-friendly
interactive browsing experience. Based on different navigation
approaches, navigation techniques can be further categorized
as query-based, progress bar-based, and hierarchical-based.

Query-based technique refers to the method of searching
and locating specific content in videos using various forms
of queries, such as text queries [78]–[80], voice queries [64],
and image queries [81]. TalkMiner [78] utilizes slide detection
algorithms to create searchable text indexes, enabling users
to easily search and browse lecture webcasts. Additionally,
relying only on existing key information for queries sometimes
leads to difficulties in accurately expressing search demands.
Therefore, NoteVideo [81] employs an approach to extract ge-
ometric shapes, formulas, and other concepts from blackboard-
style educational videos. They generate a summary image
representing these mathematical concepts, which serves as
a navigation interface, enabling users to directly navigate to
specific video frames associated with particular concepts.

Progress bar-based technique provides users with a compre-
hensive overview, eliminating the need for full-text searches
within videos. Current techniques commonly leverages the
segmented video within the progress bar to assist users in
nonlinearly locating and navigating to specific segments. By
displaying pertinent information such as video keywords [74],
thumbnails [65], [73], [82] on the progress bar of the video
player, users can gain an intuitive understanding of the overall
structure and content distribution of the video. Users can
swiftly navigate to areas of interest for playback by either
dragging the slider on the progress bar or directly clicking on
the thumbnails. Moreover, the progress bar-based navigation
also offers specific fast-forwarding techniques for controlling
the video’s playback progress, such as frame skipping [70]
and temporal blending [76].
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Task Description Data Processing Technique Visualization Technique Interaction 
Technique Application Scenario Evaluation

Video Summarization aims to 
extract key information which can 
reflect the structure of the video in a 
compact visualization.

Navigation-based technology:
• Key frame detection [76], [81], [47]
• Text recognition [74], [78]
Frame-based technology:
• Key frame extraction [88], [71]
• Object tracking [83], [86]
    (e.g., detection of pedestrians and athletes) 
• Multi-View video learning [66], [85]
Visual encoding-based technology:
• Trajectory Recognition [53], [60]
     (e.g., detection of pedestrians and vehicles)  
• Semantic information extraction [10], [52], [61]
     (e.g., sentiment, activity, events, and scenes) 

• Graph-based [90]
• Timeline-based [53], [74], 

[76], [81]
• 3D cube-based [94]
• Map-based [10], [61]

• Scaling [52], [53]
• Filter [53], [60], [74], 

[76], [78], [81], [85], 
[86], [94]

• Sketch [10], [61]

• Surveillance [66], [70]
• Entertainment [77]
• Educational [64], [65], 

[73], [78], [82]

• UWP (16.7%)
• VDAR (41.7%)
• UP (75%)
• UE (91.7%)
• AP (50%)

Video Content Understanding 
aims to model the video into a state 
sequence from a specific task, which 
s u p p o r t s  u s e r s  i n  c o n d u c t i n g 
hierarchical analysis of video content 
and promotes further reasoning.

Context-based technology:
• Topic modeling [55], [95]
• Multimodal data analysis [11], [63]
     (e.g., audio, image, text, and sensor) 
• Semantic information extraction [154] (e.g., color) 
Behavior-based technology: 
• Semantic information extraction [7], [8], [27], [101]
    (e.g., sentiment, activity, events, and scenes) 
• Multimodal data analysis [9], [49]
    (e.g., audio, image, text, and sensor)
• Frequent itemset mining [96], [101]
• Clustering Algorithms  [105], [106], [108]
• Association analysis [51]

• Chart-based [8], [55], [108], 
[148]

• Graph-based [11], [51], [63], 
[95], [148]

• Timeline-based [9], [11], [51], 
[49], [55], [96], [101], [106], 
[154], [105], [108], [148]

• Projection-based [9], [49], 
[55], [101], [108]

• Glyph-based [7], [9], [27], [49]
• Sankey-based  [9], [49]
• Map-based [63]

• Filter [7], [8], [9], 
[11], [51], [49], [55], 
[96], [101], [106], 
[105], [106], [108], 
[148]

• Scaling [7]–[9], [11], 
[51], [49], [55], [96], 
[109]

• Surveillance [96]
• Educational [7], [72], [98]

• UWP (80%)
• VDAR (60%)
• UP (40%)
• UE (80%)
• AP (0%)

Video Anomaly Detection refers 
to detecting a video image or object 
state that does not meet expectations.

Image recognition technology: 
• Image feature extraction [1], [113]
• Anomaly Image Detection [1], [113]
Sequential Anomaly detection technology: 
• Temporal Transition Pattern Mining [45]
• Temporal Event Prediction [54]
• Multimodal Event Detection [2], [58]

• Chart-based [26], [45], [50]
• Graph-based [45]
• Timeline-based [2], [26], [45], 

[54], [50]
• Projection-based  [45]

• Scaling [2], [26], [45], 
[54]

• Filter [2], [26], [45], 
[54], [58], [50]

• Emphasis [45]
• Sketch [50]

• Surveillance [1], [2], [26], 
[113], [115]

• UWP (40%)
• VDAR (60%)
• UP (60%)
• UE (80%)
• AP (60%)

Vi d e o  E d i t i n g  e n t a i l s  t h e 
storytelling annotation , clipping or 
stylized rendering of original videos 
to enhance their comprehensibility or 
achieve specific narrative effects.

Video Annotation technology: 
• Event Detection [118], [119], [128]
• Object Tracking [4], [6], [128], [126]
    (e.g., tracking the basketball/table tennis and athlete)
• Pose estimation [4], [6], [128], [126]
    (e.g., detecting the athletes poses during sports 
competitions) 
Video Clipping technology: 
• Recommendation System [46]
• Shot Boundary Detection [122]
• Image Segmentation [122]
Stylized rendering technology: 
• Image style transfer [123], [129]
• Video synthesis [62], [124]

• Timeline-based [119], [128]
• glyph [4], [6], [128], [126]

• Filter [6]
• Sketch [62]

• Sports [4], [6], [119], 
[128], [126]

• Entertainment [120]
• Educational [122]

• UWP (14.3%)
• VDAR (42.9%)
• UP (60%)
• UE (80%)
• AP (60%)

Video Enhancement  employs 
the means of visualization techniques 
to elevate the quality and viewing 
experience of videos.

Graphical embedding:
• Key frame extraction [153]
• Sequence Modeling [5], [153]
• Clustering Algorithms [5]
• Action Recognition [5], [135]
• Trajectory Recognition [5], [135], [136], [131]
3D augmentation:
• Depth-based 3D Reconstruction [138]
Immersive perspective enhancement:
• Viewpoint matching algorithms [139], [140]

• Chart-based [5]
• Glyph-based [5], [135], [136], 

[131]

• Filter [5], [135], [153]
• Sketch [5]

• Surveillance [131]
• Sports [5], [133]
• Entertainment [134]

• UWP (0%)
• VDAR (40%)
• UP (60%)
• UE (100%)
• AP (40%)

修改序号版本

Fig. 5. Summary of the state-of-the-art papers from the perspective of analysis tasks, encompassing data processing techniques, visualization, interaction
techniques, application scenarios, and evaluation. Evaluation: understanding environments and work practices (UWP), visual data analysis and reasoning
(VDAR), user performance (UP), user experience (UE), and algorithm performance (AP).

Hierarchical-based technique refers to the process of di-
viding a video into multiple hierarchical structures and pro-
viding summaries and thumbnails for each level, enabling
users to effectively utilize the hierarchical information to
quickly locate segments of interest [47], [76]. This approach is
commonly employed for lengthy videos such as courses [47]
and documentaries [76]. Existing research typically employs
automated processing techniques to convert videos into text
and generate segmentation or summaries. For instance, [47]
has demonstrated automatic recognition and segmentation of
detailed action steps in makeup tutorial videos, with rough
categorization based on facial features. However, automated
segmentation and summarization methods may not fully sat-
isfy users’ flexible requirements. Therefore, Video Digests [76]
allows users to manually mark chapters or sections within

videos to enhance the accuracy of generated summaries,
building upon automated segmentation techniques.

Frame-based technique is extensively employed in various
domains, including surveillance [66], [83], sports [84], and
transportation [85]. These methods consider videos as a series
of static images, with each image representing a specific
moment in the video. By processing and integrating the
information extracted from video frames, they generate com-
prehensive video summaries that enable users to quickly and
intuitively comprehend the themes and content of the videos
from a global perspective. Depending on the input data format,
these methods can be categorized into two types: multicamera-
based [84], [86], [87] and singlecamera-based [67], [71], [85].

Multicamera-based technique fuses and visualizes contex-
tual information from multiple cameras, providing users with a
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Fig. 6. (A) RubySlippers [64] supports content-based navigation, which can
help users browse guide videos more easily (B) Subramanian et al. [65] use
visualization and interactive methods to help users understand audiovisual data
and gain valuable insights. (C) Wang et al. [66] discuss video placement,
spatial context rendering methods, and their impact on path reconstruction
tasks. (D) Sunkavalli et al. [67] generate high-quality still images from short
video clips. (E) Ma et al. [61] summarize the multimodal movie data in a
map. (F) Liang et al. [56] summarize the eye-tracking information and image
saliency in a spatial-temporal cube.

holistic view. One of the main challenges involves integrating
video streams from different cameras while maintaining scene
consistency and coherence. To address this challenge, existing
research first aligns, calibrates, and synchronizes the image
data from different cameras, and further fuses them to generate
panoramic images or wide-angle videos. Computer vision
techniques employed in the fusion process include multi-view
video synthesis [87], path reconstruction [66], and viewpoint
transformation [84]. The fused videos can be presented using
multi-field visualization methods [66], [84] and spatial layout-
based visualization techniques [86].

Singlecamera-based technique focuses on summarizing the
specific semantic content of the videos. They can be further
categorized into two subtypes: video key content extrac-
tion [67], [71] and spatiotemporal information analysis [85],
[88]. Video key content extraction relies on the data mining
techniques, such as visual saliency of video frames [67],
and semantic information within the video [71]. Furthermore,
summarizing spatiotemporal information based on moving
objects in videos facilitates a better understanding of object
trajectories, interactions, and relationships. Such object in-
formation can be presented and analyzed using visualization
techniques like trajectory presentation [85] and spatiotemporal
relationship graphs [88].

Visual encoding-based techniques aims to abstract events,
object features, or other metadata in the video as graphic-
based symbols, enabling the revelation of patterns within
the video. Existing research employs various visualization
methods to abstract summarization of video content. These
methods primarily include temporal-based [72], 2D spatial-
based [89], [90], and 3D cube-based [53], [91] visualization.

Temporal-based technology [72], [92] primarily employs
timeline-based visual forms to organize and present abstracted
object features or events from the video in chronological order,
showcasing their temporal sequence and evolution.

2D spatial-based technique is no longer confined to the tem-
poral attributes of videos. Instead, it enables users to engage

in nonlinear exploration [10], [61], [89]. These techniques
extract and abstract the spatiotemporal correlations among
events or objects within videos and depict state transitions as
structured attribute information. In visualization, hierarchical
visualizations [61], map metaphors [10], [61], and other visual
forms are employed to provide an overview of the contex-
tual information in videos. Moreover, to present the specific
content of videos intuitively, certain works [93] segment
videos based on their semantic information and summarize
the spatiotemporal variations of objects within video segments
through the generation of static spatiotemporal snapshots of
moving objects.

3D cube-based technique combines temporal information
and spatial contextual information from videos [53], [91],
[94]. In a 3D cube, one dimension represents temporal in-
formation, while the other two dimensions depict 2D-based
spatial information. For instance, Liang et al. [94] (Fig. 6(A))
devised a static spatiotemporal cube visualization method to
summarize the spatiotemporal distribution of eye-tracking data
and image saliency. Although this 3D visualization approach
integrates more comprehensive information into a single space,
its extensive representation within a 3D volume may impose
a significant cognitive load and incur high rendering costs.

       Techniques
Metrics Navigation-Based Frame-Based Visual Encoding-Based

Scalability High scalability for lengthy 
videos on content locating

Low scalability and high 
computational complexity for 
lengthy videos

High scalability for abstracting 
lengthy and multimodal videos

Summarization 
Quality

Constrained by predefined 
rules and model performance

Constrained by model 
construction of scene 
consistency and completeness

Constrained by pattern mining 
techniques and visual design 
effectiveness

Advantages
Support efficient content 
retrieval and large-scale 
navigation

Correlate video summary with 
raw video information and 
provide an integrated view

Increase  data-ink ratio and 
reduce user perception load

Weakness Require prior knowledge of 
specific scenarios

Lack of detailed information 
on the raw video  

Demand considerable learning 
costs for visual encoding 
understanding

Fig. 7. A comparison of three video summarization techniques (navigation-
base, frame-Based, and visual encoding-based techniques) on four dimen-
sions: scalability, summarization quality, advantages, weakness.

Limitations and open problems. Although existing video
summarization techniques have made significant progress,
there are still some limitations and potential directions for
future research. First, navigation-based techniques show limi-
tations when dealing with complex and vague queries. Thus,
how to transform users’ vague intentions of video queries into
tasks that are understandable by machines remains an open
issue. Second, frame-based techniques provide an intuitive
overview of video content, but they fall short in integrating
audio, text, and other modalities. This lack of integration fails
to meet the need for a comprehensive and in-depth video sum-
marization. Finally, visual encoding-based techniques, while
providing key patterns and contextual information of videos,
still face challenges in dealing with long-duration videos.
These challenges include how to visualize large volumes of
video content to generate compact representations, and how
to represent them appropriately in detail.

B. Video Content Understanding

Video content understanding involves conducting in-depth
analysis and interpretation of the video, including semantic
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Fig. 8. (A) VideoForest [11] summarizes the movie scenes in a forest-
style visualization. (B) This paper [95] builds video data concept vectors and
performs semantic similarity calculations to achieve semantic classification.
(C) Wang et al. [96] utilized clustering analysis, frequent pattern mining,
and anomaly detection to assist users in identifying traffic flow patterns. (D)
GestureLens [7] aims to help professional presentation coaches improve their
gesture training by analyzing presentation videos.

information and contextual relationships. This requires the uti-
lization of computer vision and machine learning techniques,
such as object recognition [16], action analysis [3], [27], [57],
and scene understanding [97], to extract relevant information
from the video. Visual analysis techniques are then applied
to gain valuable insights and enhance the understanding of
video content. This analysis method has been used in surveil-
lance [96], education [7], [72], [98] and other fields [99],
[100]. Depending on the specific focus and scope of content
understanding, visualization techniques can be categorized into
two categories: context-based and behavior-based.

Context-based comprehension of video content refers to the
analysis and comprehension of the overall content of a video,
including aspects such as scenes, backgrounds, and plots. This
approach involves modeling the spatial and temporal context of
the video to identify scenes, understand the plot, and infer the
progression of events. Existing visualization methods analyze
videos from two perspectives: the multi-level information anal-
ysis and the horizontal analysis of multimodal data. The multi-
level information, such as scenes, shots, and actions, aiding
users in better understanding the structure and information of
the video content. The core idea revolves a overview-to-detail
exploration, which enables users to selectively focus on and
analyze specific video segments of interest while maintaining
an understanding of the entire video content. Some studies
employ interactive operations, including scaling, panning, and
filtering, through scalable timelines [9], [48], [101] to allow
users to adjust their focus and level of analysis. To reveal
the interconnections between different levels of video content,
some research employs graph structures [51] and personalized
visual metaphors [63], to enhance the understanding of video
semantic structure.

Although existing visualization techniques can help users
better explore the content of videos, these techniques only
reveal a single modality in the video data. However, videos
typically encompass various modalities of information [8],

[55], [98], including text, images, and audio. Different modal-
ities complement and validate each other, and the integration
and analysis of multiple modalities yield richer contextual
semantic information. The challenge in video content un-
derstanding lies in the distinct representations and features
of different modalities. To address this challenge, existing
visualization techniques [49], [101] unifies information from
multiple modalities in the video onto shared attributes, such
as emotions, postures, and actions, to facilitate communication
across modalities. In terms of visualization, researchers have
employed Sankey diagrams [9], [49], multidimensional tem-
poral graphs [101], and basic charts [102], [103] to present
multimodal attribute information and the interrelationships
between modalities. Interactive operations such as filtering and
brushing allow users to explore the differences and consis-
tencies between modalities. Furthermore, different modalities
may contain redundant information. To integrate meaningful
information from different modalities, some studies utilize
sequence analysis techniques [9] to filter out key information
from each modality.

Behavior analysis refers to understanding video content
by analyzing moving objects in the video. This approach
involves computer vision techniques such as object detection
and tracking techniques to extract moving objects from video
and analyze their behavior with visual analysis techniques.

Existing visual analysis techniques employ automated algo-
rithms to extract object behaviors and employ pattern mining
techniques to discover patterns and regularities in object mo-
tion. These patterns are then presented and explained through
visualizations. Commonly used pattern discovery techniques
include clustering analysis [104]–[107], frequent pattern min-
ing [96], topic extraction [55], comparative analysis [27], and
other machine learning methods [108], which are used to
uncover spatiotemporal variations of moving object within the
video. For instance, Wang et al. [96] utilized clustering anal-
ysis, frequent pattern mining, and anomaly detection to assist
users in identifying traffic flow patterns and trends in traffic
videos. In a map-based visualization approach, they showcased
the trend of traffic patterns over time using a timeline and
represented traffic density information with heatmaps. As
automatically extracted patterns may not necessarily align with
user interests, this research also supported user customization
of queries and filtering. Similarly, studies [27], [104], [108],
[109] employed timeline-based visualizations to depict the
spatiotemporal evolution of video object patterns, while an-
other study [109] provides a visual summary of object motion
patterns within a specific video segment using heatmaps.

Limitations and open problems. Current video con-
tent understanding techniques commonly lack interpretability,
prompting future research to focus on developing more in-
terpretable methods. The interpretable techniques would help
users gain a deeper understanding of the system’s reasoning
processes while supporting user feedback on model results. In
addition, processing long-duration video content continues to
be a challenge. Effective modeling and structuring of video
content for quick browsing and in-depth analysis still require
further exploration.
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       Techniques
Metrics Content-Based Behavior-Based

Scalability 
High scalability for lengthy videos on 
multi-level and multi-modal content 
understanding

High scalability for lengthy videos based on 
automatic model and pattern mining 
techniques

Conprehension 
Ability

Possess strong analytical capabilities for 
static information, with rich contextual 
information

Possess strong analytical capabilities for 
dynamic information, with rich contextual 
information

Advantages
Support hierarchical analysis from 
overview to detail, and integrated analysis 
based on multimodal information

Support analysis of dynamic behaviors in 
videos, including the event pattern mining, 
trend prediction, and intention understanding

Weakness Overlook the dynamic changes in the 
temporal dimension

Require prior knowledge of specific 
scenarios

Fig. 9. A comparison of three video content understanding techniques
(content-based and behavior-based techniques) on four dimensions: scala-
bility, conprehension ability, advantages, weakness.

C. Video Anomaly Detection

Video anomaly detection aims to identify aberrant patterns
and behaviors within video streams [110]–[112]. Anomaly
is highly correlated with abnormal periods and abnormal
subsequences in videos which tends to occupy only a small
fragment of the overall video stream. By modeling exceptional
behaviors in the videos, it becomes possible to detect non-
standard, sudden, or irregular events. This technique finds
extensive application in security surveillance [1], [26], [113],
enhancing the efficiency and accuracy of video monitoring
systems. The existing techniques primarily contain advanced
image recognition techniques [1], [113], [114] and sequen-
tial anomaly detection algorithms [2], [26], [54] to detect
and recognize complex abnormal behaviors and events in
video image sequences.

In terms of the image recognition techniques, some works
model the anomaly based on the image features [1], [45],
[113]. RipViz [1] integrates machine learning with flow analy-
sis feature detection to extract rip currents from static videos.
Utilizing optical flow technology, it captures unstable 2D
vector fields from these videos, which aims to analyze the
motion of each pixel over time. The identified rip current
locations are then overlaid on the original video for an intuitive
visualization. Furthermore, some works leverage multimodal
anomaly detection algorithms to discover video anomalies [2],
[26], [58]. The reciprocal verification of information between
different modalities yields more precise results in anomaly
detection and analysis. These methods employ deep learn-
ing models, such as multimodal convolutional neural net-
works [115], to jointly analyze multimodal data, achieving
enhanced accuracy in detecting and analyzing anomalies.

In terms of visualization, these techniques employ charts
[115], custom glyphs [54], and maps [58] to present mul-
timodal data, assisting users in intuitively comprehending
the anomalous information within. For example, Tang et
al. [2] (Fig. 11(C)) introduced a risk-aware framework named
VideoModerator, designed for rapid detection and removal of
inappropriate or explicit content in e-commerce live streaming.
This work follows a “learn and moderate” strategy, which
supports interactive iterative labeling of authentic multimodal
video tags, bridging the gap between human moderators and
machine learning models.

However, these models for video pattern recognition are
a “black box” for users. To solve this problem, recent stud-
ies [116], [117] have introduced interpretation techniques in

visual predictive analytics to explain these predictive models.
Additionally, some works adopt the hierarchical-based ap-
proach to scrutinize anomaly information at different levels of
granularity, verify the reliability of model results, and capture
the complex details of anomalies. For instance, Piringer et
al. [54] conducted surveillance on video streams within road
tunnels, establishing a context-sensitive priority concept for
anomalous information to delineate scenarios ranging from
routine operations to catastrophic disasters. The visualization
interface presents event information at various levels of ab-
straction, including time-based abstract event listings, spatial-
temporal anomalous events within the tunnel, and detailed
monitoring videos corresponding to each event. Similarly, Li et
al. [50] detected and analyzed students’ head and mouse move-
ments during exams, visualizing suspected cheating behaviors
across different hierarchical levels, and facilitating swift identi-
fication by educators. This primarily encompasses four levels:
a student list view for a quick overview, a problem list view
incorporating risk indicators, a behavior view encompassing
mouse and head movements, and a replay view showcasing
the original video.

       Techniques
Metrics Image Feature-Based Sequence Feature-Based Multimodal Feature-Based

Advantages
Supported by mature 
techniques and has 
widespread applications

Support the identification 
of anomalous patterns in 
dynamic sequences

Support the analysis of 
multimodal data, with high 
reliability of detection results

Weakness Overlook anomalies 
based on time sequence

Require a large amount of 
sequence data to ensure 
the detection accuracy 

Demand high computational 
resources

Fig. 10. A comparison of three video anomaly detection techniques (image
feature- based, sequence feature-based, and multimodal feature-based tech-
niques) on two dimensions: advantages, weakness.

Limitations and open problems. Although existing re-
search has predefined anomalies based on different contexts,
the definition of anomalies often relies on individual experi-
ence and specific backgrounds. As a result, there is still a lack
of consensus between human intent and model understand-
ing. Future research can leverage visualization techniques to
incorporate individual intuition and expertise into the video
analysis process, thereby facilitating consensus on anomalies
between humans and machines. Additionally, some studies
have attempted to utilize multimodal information for anomaly
detection, but the interpretability of the model’s results is
typically lacking. Therefore, future research can explore the in-
terrelationships among multimodal information to assist users
in validating the consistency between different modalities, and
then better support decision-making.

Sequence feature-
based

Multimodal feature-
basedImage feature-based

CBA

Video Anomaly Detection
6%

Fig. 11. (A) Piringer et al. [54] conducted surveillance on video streams
within road tunnels, (B) Silva et al. [1] introduced a feature detection method
based on deep learning and flow analysis, which is used to extract the location
of tearing flow from static video and display it visually. (C) Videomodera-
tor [2] presents the multimodal user interface for video moderation.
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D. Video Editing

Video editing entails the annotation [118]–[120], clip-
ping [46], [121], [122], or stylized rendering [62], [123]–
[125] of original videos to enhance their comprehensibility or
achieve specific narrative effects. These techniques are mainly
used in sports videos [4], [6], entertainment videos [120], and
educational videos [122].

Annotation-based video editing focuses on annotating ob-
jects, behaviors, events, and other elements within videos to
generate more understandable video content. This task presents
a notable challenge as it involves manual annotation, demand-
ing substantial time and effort. To address this predicament,
existing methods primarily alleviate the burden of human
annotation through two approaches: automated video semantic
extraction and user-friendly interactive video annotation.

Automated video semantic extraction techniques employ
advanced algorithms encompassing computer vision, natural
language processing, and semantic understanding, to initially
identify and extract the information that needs to be annotated.
These algorithms facilitate the automatic recognition and an-
notation of content and objects within videos, thus alleviating
human cognitive loads associated with comprehending basic
video elements. Subsequently, these techniques also enable
users to interactively annotate videos, catering to their per-
sonalized annotation requirements. Existing studies [6], [119],
[126] usually establish appropriate annotation guidelines based
on specific scenarios. Their guidelines encompass the ob-
jectives, content, and standards for annotation, as well as
the visual representation of annotations. For rules of specific
contexts, these guidelines offer annotation recommendations
while ensuring the accuracy and consistency of annotations,
thereby enhancing the efficiency and reliability of the annota-
tion process. The visual presentation of annotations typically
involves embedding scene-specific symbols into the video
content, augmenting the efficiency of video comprehension.

To enrich the information conveyed by videos and fulfill
various video comprehension demands, certain studies [6] in-
troduce supplementary information such as textual comments,
viewer perspectives [4], and question-answer pairs [127] as
annotations for videos. Furthermore, in addition to enhanc-
ing video comprehension through visual annotations, some
works [128] employ these annotated data to support the
development of video event recognition models.

User-friendly interactive techniques [120], [128] emphasize
the design of user-friendly interfaces and intuitive interac-
tion methods, facilitating user convenience in video editing
and annotation processes. For instance, EventAnchor [128]
(Fig. 13(A)) is a user-centric annotation tool composed of
a selector and an annotator. This annotator enables users to
choose event types from a predefined list and apply them
to specific time intervals within the video. Furthermore, once
users have selected one or multiple event types, they can utilize
the annotator to append further context-specific details.

Clipping-based video editing focuses on the cutting and
arrangement of video clips to create a specific narrative.
Existing techniques employ automated algorithms to identify
keyframes, segments, or events, assisting users in quickly

marking significant moments. This allows users to concentrate
on the creative process itself rather than the editing process,
thereby enhancing video editing efficiency. In addition to
editing raw video materials, editors can enhance the artistic
appeal and attractiveness of videos by incorporating addi-
tional elements. These supplementary elements can include
images, audio, animations, etc. In terms of visualization,
certain works [46], [122] provide a key-information-based
timeline and thumbnails for videos, enabling editors to better
comprehend the structural content, temporal relationships,
and logical connections between segments. This method is
convenient for users to precisely control the time duration,
and transition of the video in the process of editing the video.

Although timeline-based editors support intuitive and flex-
ible editing, these tools may only be suitable for individuals
with some video editing experience, and require a learning
curve for novice creators. To improve editing efficiency for
novice creators, several works [46], [122] summarize com-
monly used editing techniques and offer recommendations
and guidance (such as editing skills, transition techniques,
audio processing methods, subtitle design techniques, etc.)
to editors. For instance, B-Script [46] (Fig. 13(B)) leverages
data-driven recommendation algorithms to provide valuable
references for editors, aiding them in making decisions about
adding supplementary information.

Stylized video rendering is to enhance the visual presen-
tation and viewing experience of videos by applying artistic
effects and style transformation techniques. Existing works
predominantly employ machine learning and artificial intel-
ligence techniques such as image style transfer [123], [129],
[130] and video synthesis [62], [124] to achieve artistic render-
ing of videos. The difficulty in implementing these techniques
is to maintain the consistency of video object details and
appearance. Specifically, it provides a unified abstraction and
temporal coherence while accurately rendering the art style in
terms of details and object boundaries. Furthermore, to address
the need for fine-grained and personalized rendering, some
studies combine automated painting rendering with detailed in-
teractive control, utilizing either stroke-based approaches [123]
or gesture-based approaches [62].

       Techniques
Metrics Annotation Clipping Stylized rendering

Scalability 
High scalability for 
annotating key content in 
lengthy videos

Low scalability for 
constructing the narrative 
of lengthy videos

High scalability and high 
computational complexity for 
lengthy videos

Editing Quality
Constrained by predefined 
rules and model efficacy in 
semantic extraction

Constrained by 
recommendation efficacy 
and model efficacy 

Constrained by the consistency 
of model construction in object 
details and appearance

Advantages
Support efficient key 
content locating and large-
scale annotation

Support flexible and 
creative narrative 
construction

Increase the artistic effect and 
visual impact of the video

Weakness Require prior knowledge of 
specific scenarios

Require video editing 
experience and the editing 
process is time-consuming

Demand high computational 
resources and may cause 
distortion from the raw video

Fig. 12. A comparison of three video editing techniques (annotation, clipping,
and stylized rendering techniques) on four dimensions: scalability, editing
quality, advantages, weakness.

Limitations and open problems. Existing video editing
techniques primarily focus on two aspects: video editing
skills [46], [122], [123] and automated semantic extraction
techniques [4], [6], [128]. However, these studies are not
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sufficient in mining and understanding users’ editing inten-
tions. Accurately interpreting and expanding users’ editing
intentions, and subsequently providing editing suggestions that
align with their needs, can significantly reduce the editing
burden on users. This is especially important for novice
users, as their editing intentions tend to be more ambiguous.
Furthermore, with the rapid growth of video content, the
demand for video editing has also increased. However, existing
techniques do not support batch video editing. There are
several challenges in this process: (1) the effective presentation
of batch videos. (2) Understanding users’ editing intentions
and extending these intentions to batch videos. (3) Validating
that batch editing operations align with users’ intentions. These
are open problems that have not been fully explored.

12%
Video Editing

Annotation Clipping Stylized rendering
A B C

Fig. 13. (A) EventAnchor [128] is a user-centric annotation tool com-
posed of a selector and an annotator. (B) B-Script [46] leverages data-
driven recommendation algorithms to provide valuable references for editors.
(C) AniPaint [123] supports interactive control over individual regions and
keyframe settings for individual strokes by users.

E. Video Enhancement

Video enhancement techniques employ visualization tech-
niques to enhance the video quality and viewing experi-
ence, including enhancing video content, improving visual ef-
fects, and improving viewers’ understanding of videos. These
techniques have been used in many fields such as surveil-
lance [131], [132], sports [5], [133], and entertainment [134].
Based on different technical characteristics, current techniques
can be mainly divided into three types: graphical embedding-
based [5], [132], [135], [136], immersive-based [137], [138],
and 3D augmentation-based [139], [140].

Graphical embedding-based techniques involve the in-
tegration of visual elements, such as graphics [126], [141],
[142], labels [143] and charts [141], into raw videos to
provide annotations and contextual cues. By inserting visual
representations such as arrows, lines, shapes, crucial points,
and actions into the video, the video content can be clarified
and accentuated, thereby enhancing the viewer’s understanding
and attention. However, unsuitable embedding may hinder
users from gaining insights into the video data. To tackle this
challenge, numerous rule-based visualization methods have
been proposed. For instance, Stein et al. [136] summarize
the game movement states in soccer videos and design cor-
responding bespoke visual forms (e.g., heat maps, doughnut
charts, and timeline movement paths). VisCommentator [126]
summarizes objects, events, and tactics in table tennis matches
and recommends contextualized visual forms to users. It
enables personalized adjustments of the semantic information
embedded in the video annotations, facilitating the production
of high-quality augmented videos.

25%
Video Enhancement

Graphics 
Embedding

Immersive View 
Enhancement 3D Enhancement

A B C

Fig. 14. (A) Lin et al. [5] describes a technique for enhancing the viewing
experience of basketball games through embedded visualization technique.
(B) TIVEE [137] is an immersive visual analysis system designed to help
users explore and explain badminton tactics from multiple perspectives. (C)
Liu et al. [139] introduced a point cloud-based multi-view stereo matching
algorithm for free-viewpoint video.

Immersive-based techniques utilize immersive interactive
devices, such as head-mounted displays [134], [144], [145],
to enhance the viewpoints of videos, thereby heightening the
viewer’s sense of engagement and immersion. This technique
provides diverse perspective choices, such as third-person and
first-person viewpoints, enabling viewers to observe video
content from varying angles and obtain distinct insights and
experiences. However, realizing such immersive interaction
also confronts several key challenges: the avoidance of visible
distortions and discontinuities at depth discontinuities. To
overcome these issues, Ana et al. [138] adopt an image-based
rendering approach that converts depth information into a 3D
grid and perform corresponding translations based on viewers’
head movements to generate new perspectives.

3D augmentation-based techniques offer viewers a more
realistic viewing experience. By transforming two-dimensional
videos into three-dimensional format, viewers can access
videos with unrestricted viewpoints, perceive the depth and
distance of objects within the video, and acquire a heightened
sense of authenticity. Existing methods [139], [140] address
the data sparsity and discontinuity caused by camera position
changes by proposing viewpoint-matching algorithms to en-
sure visual consistency and coherency.

       Techniques
Metrics

Graphics Embedding-
based Immersive-based 3D Enhancement-

based

Enhancement 
Effect

Constrained by predefined 
rules and model performance

Constrained by high-performance 
hardware support and precise 
processing of depth information

Constrained by model
construction of visual 
consistency and coherence

Advantages
Support precise visual 
guidance for key content in 
videos

Support immersive and multi-
perspective video viewing 
experiences

Supporting realistic and 
stereoscopic video visual 
effects

Weakness
Demand considerable 
learning costs for visual 
encoding understanding

Lack enhancement of detailed 
and context information in video

Demand high computational 
complexity

Fig. 15. A comparison of three video enhancement techniques (Graph-
ics Embedding-based techniques, Immersive-based techniques, and 3D
Enhancement-based techniques) on three dimensions: enhancement effect,
advantages, weakness.

Limitations and open problems. Current annotation-based
techniques primarily focus on enhancing specific frames, ac-
tions, and shots, rather than a comprehensive understanding
of the overall video content. While automated detection and
annotation recommendations have improved the convenience
of user interaction, video annotation remains a cognitively
demanding task for users who are not familiar with the video
content. In future work, annotation enhancement of video con-
tent can be developed based on concepts or questions proposed
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by users, further enhancing the accessibility and understanding
of video content. Secondly, although existing immersive-based
techniques provide users with a fully immersive interactive
experience, most methods enhance video content only through
the visual channel, ignoring other sensory channels such as
hearing and touch. Moreover, research on user experience
evaluation (such as the authenticity of user perception, the
naturalness of interaction, and the comfort of long-term use)
for immersive-based video enhancement techniques is still
insufficient. Lastly, 3D augmentation-based techniques, due to
their high computational complexity, are difficult to apply in
real-time video analysis and have certain limitations in terms
of user interaction.

15%
Surveillance Video

Outdoor-based 
surveillance

Intdoor-based 
surveillance

A

B D

C

Fig. 16. (A) sViSIT [53] maps the spatial-temporal trajectory into a 3D
cube. (B) Fan et al. [58] utilizes IBM-S3 for temporal anomaly detection
and employ a matrix arrangement visualization approach. (C) Viz-A-Vis [89]
maps the activity space into a 3D cube for visual analysis and exploration.
(D) Botchen et al. [88] propose the video stream summarization technique
based on multi-attribute mapping.

V. APPLICATIONS

In this section, we categorize video data according to
application scenarios and summarize four major types of
video data: surveillance video for indoor scene and outdoor
scenes, sports video for individual sports, double-player sports
and team sports, entertainment video for movies and news,
education video for course video and presentation videos. For
each application scenario, we first describe the characteristics
of the video data, then discuss the research value, challenges,
and the existing visual analysis techniques. In discussing visual
analysis techniques, we also provide a discussion based on
the visual analysis tasks summarized in Section IV. Addition-
ally, we have constructed a summary table (Fig. 17), which
overviews and navigates the visual analysis techniques from
the perspective of application scenarios, covering semantic
context, visualization and interaction techniques, as well as
the datasets.

It is worth noting that most of the datasets used in our
surveyed papers are not public standard datasets, but rather
collected through the internet platforms or recorded by the
authors. Datasets in the field of video visualization are usually

designed for specific application processes, hence the data
used not only includes the raw videos but needs to extract
other modalities and forms of information extracted from these
videos according to different task requirements to support
visual analysis and exploration. Therefore, we summarize the
datasets based on specific application scenarios.

A. Surveillance Video
In various domains such as transportation [70], [96], [131],

[146], residential facilities [66], [89], [107], and public
safety [54], [88], [132], there is a growing demand for high-
quality on-site videos and intelligent security alerts. Video
surveillance techniques have been widely employed in societal
production and daily life, particularly in the areas of security
monitoring [45], [88], early warning [54], and emergency
linkage [132]. However, the lengthy and monotonous nature
of surveillance video poses great challenges for surveillance
video review. The primary objective of surveillance video
analysis is to perform video summarization and identify video
anomalies. Existing approaches model and analyze the state
sequences of active subjects (individuals and vehicles) in
surveillance videos, achieving advanced semantic mining and
comprehension of video content. In this section, we cate-
gorize these visual analysis approaches based on different
surveillance environments: outdoor-based [53], [54], [85],
[86], [132] and indoor-based [50], [88], [89]. We provided
detailed descriptions of these two categories of research in the
following subsections.

Outdoor-based surveillance involves complex scenes and
objects, such as background disturbances, dynamically chang-
ing environments and the presence of non-target objects.
The datasets involved in this scenario include public place
videos [53], [85], [86], tunnel videos [54], and campus
videos [58]. The duration of these videos is approximately
30 minutes. Current works major involves two aspects: sum-
marization of the object activity and anomalous monitoring.

Certain studies focus on summarizing the activity of pedes-
trians in surveillance videos [53], [85], [96]. Due to the
definition of outdoor-based surveillance video is low, and the
monitored object occupying a small proportion of the video
screen, it is difficult to capture microscopic human activities
such as facial expressions, presentation content, and posture.
Therefore, the trajectory information of moving objects has
become the most critical feature in exploring the activities.
Notably, spatial location information and temporal information
are the main attributes of trajectory data.

In the stage of trajectory data extraction, the visual tech-
niques involve moving object detection and trajectory match-
ing. Most works [53], [85], [86] employ optical flow, fore-
ground and background segmentation, and frame-difference
methods to achieve moving object detection. Based on the
detected objects, they locate the context position of the same
target based on the proximity of object positions in adja-
cent frames to achieve trajectory extraction. This trajectory
extraction method requires less computation. However, it is
not suitable for scenes with high crowd density.

In terms of visual design, existing works represent trajec-
tories with points [53], lines [86], and strips [85]. Nie et
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Application Scenario 
Description Semantic Context Visualization 

Technique
Interaction 
Technique Dataset Evaluation

Surveillance video is mainly 
divided into indoor and outdoor. 
Outdoor surveillance video has a 
wide detection range, low video 
quality, and lack of target detail 
information, so the track movement 
is the main information conveyed. 
Indoor surveillance video has a 
small detection range, high video 
quality, and supports various sensors 
and audio recording tools for 
monitoring.

• Object trajectory [53], 
[66], [83], [86], [88], [96], 
[131]

• Emotional information [3]
• Head movements [117]
• Audio information [2], 

[26], [115]
• Sensor information [54], 

[96], [117]

• chart-based [3], [26], 
[45], [53], [50]

• Graph-based [45]
• Timeline-based [2], [3], 

[26], [45], [53], [54], 
[50], [86], [96]

• 3D-based [53]

• Scaling [3], [26], 
[45], [53], [50]

• Filter [2], [3], 
[26], [45], [53], 
[54], [58], [50], 
[86], [96]

• Emphasis [45]
• Sketch [50]

• Public place videos [53], [83], 
[86]

• Shopping mall datasets [88]
• Tunnel videos [54]
• Campus videos [58]
• Classroom videos [3], [45]
• Mock online exam videos [50]

• UWP (50%)
• VDAR (70%)
• UP (40%)
• UE (80%)
• AP (40%)

Sports videos encompass a wide 
range of scenes, including dance, 
cycling, tennis, table tennis, snooker, 
baseball, soccer, and more. These 
videos serve as valuable sources of 
information, showcasing individual 
sports patterns and team tactics.

• Skeleton Information [27], 
[108]

• Target trajectory [60], 
[109], [106], [135], [136], 
[155]

• Target movement [4]–[6], 
[105], [126]

• Sensor information [150]

• Chart-based [5], [108], 
[148]

• Graph-based [148]
• Timeline-based [60], 

[109], [105], [108], 
[119], [128], [148]

• Projection-based [108]
• Glyph-based [4]–[6], 

[27], [85], [105], [128], 
[126], [135], [136]

• Sankey-based [60]
• 3D-based [27]

• Scaling [109]
• Filter [60], [85], 

[148], [153]
• Emphasis [105]

• Snooker videos [151]
• Baseball videos [153], [152]
• Tennis match videos [59], [118]
• Table tennis match videos [105]
• Volleyball videos [91]
• Soccer videos [85], [109], [135], 

[136], [148]
• Cycling videos [150]
• Dance videos [108], [149]
• Running videos [27]

• UWP (57.6%)
• VDAR (76.9%)
• UP (50%)
• UE (76.9%)
• AP (30.8%)

Entertainment video generally has 
distinct themes and rich narrative 
content, which is used to enrich 
people’s spiritual life. The sources 
of entertainment videos are 
generally TV and Internet platforms. 
Such videos have high-definition 
video information and audio 
information.

• Emotional information 
[10]

• Text information [10], 
[11], [55], [71]

• Chart-based [55]
• Graph-based [10], [11], 

[51]
• Timeline-based [10], 

[11], [51], [55], [154]
• Projection-based [55]
• Glyph-based [10]

• Scaling [11], [51], 
[55]

• Filter [10], [11], 
[51], [55]

• Sketch [10]

• Movies [10], [11], [48], [71], 
[154]

• NHK’s News [51]
• ARD news [55]
• TV program [71]

• UWP (50%)
• VDAR (87.5%)
• UP (50%)
• UE (87.5%)
• AP (12.5%)

Educational videos such as course 
videos, how-to videos and 
demonstration videos with HD 
video quality, containing audio and 
text information with lots of context 
and unstructured information.

• Target gestures [49]
• Target posture [7], [49]
• Emotional information 

[9], [101]
• Text information [74], [78]
     (e.g., Pop-ups, Subtitles,           
Captions, Script)
• Audio information [8], 

[9], [101], [122]

• Chart-based [8]
• Timeline-based [7], [9], 

[49], [74], [81], [101]
• Projection-based [9], 

[49], [101]
• Glyph-based [7], [9], 

[49]
• Sankey-based [7], [49]

• Scaling [7]–[9], 
[49]

• Filter [7]–[9], 
[49], [74], [78], 
[81], [47], [101]

• Emphasis [8], [9], 
[49]

• Speech videos [8], [9], [49], [101]
• Course videos [74], [81]
• Makeup videos [47]
• NPTEL dataset [79]

• UWP (15.4%)
• VDAR (84.6%)
• UP (53.8%)
• UE (100%)
• AP (15.4%)

8min 30min

90min30min

120min10min

90min10min

Fig. 17. Summary of the state-of-the-art papers from the perspective of application scenarios, covering semantic context, visualization, interaction techniques,
dataset, and evaluation. The glyph in the dimension of the dataset represents the average time duration of the videos. Evaluation: understanding environments
and work practices (UWP), visual data analysis and reasoning (VDAR), user performance (UP), user experience (UE), and algorithm performance (AP).

al. [86] and Hoeferlin et al. [85] summarize the motion state of
the monitored objects based on the trajectory data, to realize
the fast browsing and retrieval of the video. Specifically,
Nie et al. [86] propose a compact video synopsis technique
based on optimized spatiotemporal trajectory. This technique
achieves trajectory fusion without overlap and collision which
improves the utilization of time and space. Hoeferlin et al.
[85] map clustered trajectory data to a 2D visual space. They
draw video scenes with cartoon illustrations and use strips
with arrows to represent the trajectories. This form of visual
mapping improves the speed of data perception and enhances
the user’s memory of video content. In order to enable users to
interactively filter and explore trajectory patterns, Meghdadi et
al. [53] map the trajectories into visual a 3D cube (Fig. 16(A)).
The visual prototype they proposed allows users to select

regions of interest and filter events based on the spatiotemporal
characteristics of motion.

Furthermore, some studies are dedicated to anomalous mon-
itoring of surveillance videos [54], [58], employing automated
anomaly event detection algorithms for video surveillance. Fan
et al. [58] (Fig. 16(B)) utilize IBM-S3 for temporal anomaly
detection and employ a matrix arrangement video visualization
approach that integrates information from different camera
sensors and geographical locations to enhance detection accu-
racy and response speed. Piringer et al. [54] utilizes sequence
analysis techniques to predict potential anomalies (such as
fires) in tunnels, and employs tunnel imagery visualization
with abstract graphics to visualize detected events. Users can
access any temporal and spatial points to validate predicted
anomalies in real-time or historical videos.
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Indoor-based Surveillance has a relatively narrow mon-
itoring scope and can be assisted with various sensors and
audio recording tools (such as recorders, muscle sensors,
and motion sensors.) to achieve more detailed monitoring.
Effectively utilizing such data to achieve advanced seman-
tic content understanding in videos is a promising research
topic. A critical task is the transformation, alignment, and
coordination of multimodal data. Another critical task is the
transformation, alignment, and coordination of multimodal
data. The datasets involved in this scenario include shopping
mall datasets [88], classroom videos [3], [45] and mock online
exam videos [50]. The duration of these videos scales from 10
minutes to 30 minutes. Compared with outdoor surveillance
video, indoor surveillance video has a higher definition and can
capture more subtle human activity information. Therefore, the
subtle state information of the monitored object, such as facial
emotion, posture, and motion state, becomes the main features
in exploring the activities [3], [88], [89].

Most of the existing visual analysis techniques use timeline-
based visualization to represent the state information of moni-
tored objects, which aims to convey the evolution patterns over
time. Zeng et al. [3] model facial emotion to mine and analyze
student status in the classroom. They propose an interactive
visual analysis tool EmotionCues, which uses multi-view link-
age to present the evolution pattern of the monitored student’s
emotion. Likewise, Li et al. [50] consider head movement as
an essential indicator for assessing the cheating behavior of
candidates during online exams. They also use band diagrams
to plot the candidates’ head movements at different angles. To
associate multimodal data, Botchen et al. [88] (Fig. 16(D))
combine geometric information, semantic information, and
statistical information to realize the mining of individual be-
havior patterns and the correlation of inter-individual behavior
patterns. There are also some works devoted to analyzing
overhead perspective videos. For example, Romero et al. [89]
focus on analyzing surveillance video from the overhead view
(Fig. 16(C)). They create a 3D activity cube analysis tool so
that users can observe activity changes in a monitored space.

Sports Video
23%

 Individual sport Double player sport Team sports
A

B

C

D

E

F

Fig. 18. (A) DanceVis [108] is proposed to assist teachers in evaluating the
dance movements of students. (B) Liu et al. [106] proposed a viewpoint-
invariant visualization approach that facilitates interactive and customized
analysis of motion postures within videos. (C) Polk et al. [104] designed
a visualization system named CourtTime to analyze tennis videos. (D)
ShuttleSpace [147] visualized the shuttle trajectories in virtual reality; (E)
Stein et al. [136] integrated multiple visualization charts into soccer videos
for further analysis. (F) Wu et al. [148] proposed a visual analysis system,
named ForVizor, to help users explore the team movements of soccer matches.

B. Sports Video

Sports videos have been visualized and analyzed by var-
ious visual analysis methods to help people mine individ-
ual movement patterns, confrontation strategies, and team
tactics. Current sports video visualizations mainly focus on
specific sports scenarios, such as running [27], dance [108],
[149], cycling [150], tennis [57], [104], table tennis [105],
snooker [151], baseball [152], [153], rugby [60], and soc-
cer [109]. The datasets for these videos are typically sourced
from public sports matches [105], [109] or recorded by the
authors [84], [148]. The duration of these videos scales from
30 minutes to 90 minutes. The view scope and clarity of these
videos vary with different sports scenarios and the number
of athletes involved, leading to differing complexities in vi-
sual analysis. Therefore, we further divide these sports into
three categories: individual sports, double-player sports, and
team sports based on the number of athletes.

Individual sports involve only one athlete, such as
dance [108], [149], bicycling [150], and running [27]. The
visual analysis techniques based on individual sports focus
on the kinematic performance and technical intricacies of
individual athletes. These analytical approaches aim to track
the articulations and bodily segments of athletes, capturing
and analyzing the precision of their postures, the fluidity
of their movements, and the congruity of their technical
elements. They enable the visualization and analysis of action
curves [149], motion trajectories [150], and other data [108].

By employing visualization techniques, a comprehensive
understanding of athletes’ technical strengths and areas for im-
provement can be obtained, thereby providing them with more
precise training guidance. For example, DanceVis [108] is pro-
posed to assist teachers in evaluating the dance movements of
students. It extracts four physical and four behavioral attributes
from dance video. Then, it calculates similarities between
standard and student pose skeletons as the recommended score
of their dance. In visualization, they integrate multiple charts
such as scatter plots, radar charts, bar charts, and line charts
to present the reference indicator in multi-aspect for teachers.
In order to enable amateur runners to discern the fundamen-
tal disparities between their running postures and those of
professional runners, Liu et al. [27] (Fig. 18(B)) propose
a viewpoint-invariant approach that facilitates interactive and
customized analysis of motion postures within videos.

Moreover, there are also some techniques devoted to en-
hance the kinematic patterns of crucial body segments by
incorporating graphical embeddings into individual sports.
Kaplan et al. [150] propose a visual design that embeds
visual representations into cycling training videos to enhance
the pattern of cyclists’ pedaling. In this work, the authors
apply circular form charts (e.g., circle arrows and triangles)
to display the pedaling data to help users figure out and
understand cyclists’ movement patterns in cycling training. To
further enhance the emotional expression in the such videos,
Payne et al. [149] (Fig. 18(A)) propose danceOn, which allows
users to design cartoon elements based on different movement
patterns and embed them into dance videos to enhance the
emotional expression.
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Double-player sports involve two players such as bad-
minton [137], [147], tennis [59], [104], [118], table tennis [57],
[105], [128], and snooker [151]. The visual analysis techniques
based on double-player sports focuses on the interaction or
adversarial relationship between two participating athletes.
The primary objective of these techniques are to delve into the
strategies of athletes’ movements. In terms of visualization,
the main emphasis contents are placed on the visual repre-
sentation of spatial relationships [137], [147], confrontational
movements [59], [104], and modes of mobility between the
objects [105]. Through the implementation of visual analysis
techniques, one can observe and study the tactical choices,
execution, and resultant effects within the domain of double-
player sports. The invaluable value of such endeavors extends
to coaches and athletes alike, as it facilitates collaborative
improvements, fortifies opponent analysis, and enables the
formulation of more efficacious strategies. However, there
are two major challenges: (1) how to effectively present the
overview of match details and (2) how to efficiently annotate
large and dense motion events in sports videos.

To analyze and summarize match detail in double player
sports effectively, Ye et al. [147] proposed an immersive visual
analysis tool named ShuttleSpace to help analysts explore
and analyze the movement of ball trajectory in badminton
games (Fig. 18(D)). Similarly, Polk et al. [104] (Fig. 18(C))
designed a visualization system named CourtTime to analyze
tennis videos. In this work, at first, they collect the location
data from the match videos. Then, 1D space-time charts and
2D movement charts are employed to convey the insights of
the tennis match. In addition, researchers work on reducing
human interaction and effort in annotating double player sports
videos [126], [128]. For example, VisCommentator [126]
automatically extracts the objects and events in table tennis
videos and allows users to interactively annotate these items. It
allows analysts to brush the timeline and select recommended
visual elements to generate table tennis augmenting videos.

Team sports are usually played with two teams involving
many athletes such as soccer [106], [109], American foot-
ball [60], [135], and baseball [119], [152], [153]. For team
sports videos, research focuses on retrieving and summarizing
the team movement pattern and analyzing team tactics. In
the context of team sports, the visual analysis techniques
focus on analyzing the collective behavior [60], [136], team
tactics [106], [109], and overall performance [135] in team
sports. When it comes to visual analysis, the focus lies on
presenting the positional relationships [60], [106], [109] and
movement trajectories [135], [136] among multiple individ-
uals. Through visual analysis, one can observe and analyze
team tactics, defensive strategies, and offensive organization
within team sports. This holds crucial significance for training,
tactical planning, and strategic formulation in team sports,
ultimately enhancing overall collaboration and performance
levels. However, how to precisely detect, present, and sum-
marize team sports strategies becomes a challenge due to
the rapidly changing motion trajectories and the difficulty in
tracking moving targets.

To effectively summarize the team tactics, Wu et al. [148]
(Fig. 18(F)) propose a visual analysis system, named ForVizor,

to help users explore the team movements of soccer matches.
They utilize the proposed automatic algorithms to detect
the team movements automatically. Based on this detected
information, they use multiple linked views such as matrix,
narrative timeline, and pitch to help users dig out the for-
mations and tactics transformation of teams. To visualize
the team movement patterns, Stein et al. [136] (Fig. 18(E))
incorporated movement data into the raw video to monitor
sports patterns in real time. In visualization, the technniques
embed many visualization charts such as heat maps, doughnut
charts, and timeline movement paths into videos to present
the dominant regions, pass distances, players’ movements, and
players’ reactions in soccer matches.

13%
Entertainment Video

Movie video News video
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B
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D

Fig. 19. (A) Kurzhals et al. [48] performed semantic segmentation of the
movie’s content to conduct a multi-level semantic inference analysis of the
video content. (B) VIAN [154] summarized the video content from the aspect
of color. (C) Markus et al. [55] summarized the news topics by extracting the
text in news videos. (D) Renoust et al. [51] explored patterns of association
between politicians by face tracking.

C. Entertainment Video

Entertainment video generally has distinct themes and
rich narrative content. The datasets of entertainment videos
are generally movies [10], [48], [154], TV programs [71],
news [51], [55], etc. obtained from online platforms. The
duration of these videos scales from 10 minutes to 120 min-
utes. Such videos have high-definition video information and
audio information. Therefore, this type of video data is usually
high-quality and multimodal. Regarding the analysis of enter-
tainment videos, existing research primarily concentrates on
summarizing and comprehending medium-sized entertainment
videos with compact content. This analysis assists users in
enhancing their video-watching efficiency or providing tailored
recommendations for captivating segments. In this section,
we mainly review the visual analysis work based on movie
videos [10], [48], [71], [154] and news videos [51], [55],which
represent the two most prevalent types of entertaining videos.

Movie video is an artistic creation that revolves around
the elements of storytelling, performances, and visual effects.
Specifically, these contents are reflected in the style, theme,
emotion, character relationships in the movie, as well as the
director’s creative techniques and intentions. However, the
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perception of art forms such as movies tends to be subjective,
which poses challenges in precisely defining analysis tasks and
establishing quantifiable evaluation criteria for movie videos.
Furthermore, movie videos encompass various multimodal
information, including images, audio, and scripts, thereby
amplifying the complexity of data and enhancing the diffi-
culties encountered in visual analysis. To address these issues,
the existing techniques have been carried out such as scene
analysis [48], [71], emotion recognition [10], shot composition
analysis [11], and visual effects analysis [154], enabling a
comprehensive understanding and assessment of movies. Ex-
isting visualization techniques are introduced to explore movie
videos from two major aspects: movie content [10], [48], [71]
and movie styles [11], [154].

Movie content can be summarized into four key elements:
when, where, who, and what. Existing research often analyzes
the movie content from one or several specific elements. Emo-
tionMap [10] proposes EmotionDisc to model emotions based
on the emotion detection techniques of face, text, and audio.
Additionally, it designs a compact map-style visualization
that integrates the information consisting of time sequence,
character emotions, events, and the correlations between items
to summarize the semantic structure of the movie. In order to
analyze the movie from a more macro perspective, some works
analyze the movie content in scenes [48], [71]. Kurzhals
et al. [48](Fig. 19(A)) perform semantic segmentation of the
movie content based on integrated multimodal information (in-
cluding script, images, scripts, and subtitles) to conduct multi-
level semantic analysis of the video content. In visualization,
their work provides a scalable timeline that allows users to
freely filter and refine the presented video granularity.

Movie style includes shooting techniques such as the ap-
plication of color and scene transitions. To analyze movie
style from the perspective of color, VIAN [154] (Fig. 19(B))
combines background segmentation techniques with human
perception of color to assess the shooting style and aesthetic
quality of the movie. VideoForest [11] generates session-based
video summaries by leveraging bullet screen data and video
frame information, and enable the exploration of shooting
techniques and filter styles. In the visual design of sum-
maries, it introduces a forest-themed visualization approach
to metaphorically showcase movie scenes and keyframes.

News videos has characteristics of concise narratives and
clear content structures. The focal points of news video
analysis often encompass aspects such as accuracy, objectivity,
reporting style, and news value, aimed at evaluating the quality
and credibility of news reporting. Analyzing news videos
allows for the exploration of content, themes, perspectives, and
linguistic styles conveyed in news reports, as well as assessing
the impact and effectiveness of news dissemination. This
analysis may involve techniques such as speech recognition,
sentiment analysis, keyword extraction, and event detection.
Compared to movies, news videos employ simpler shooting
techniques, with camera angles switching among a few fixed
positions. Based on the specific news scenario, news videos
can be categorized as studio news [55] and on-site news [51].

For studio news, the video scene is relatively stable, and key
information may be reflected in text and audio information.

Markus et al. [55] (Fig. 19(C)) employ optical character
recognition technology to extract subtitle and title informa-
tion from video images. They then utilize topic extraction
techniques to semantically cluster news in a collection of
videos. Moreover, they project news data using topic-based
vectors to compare the similarities and dissimilarities between
different topics. Additionally, they utilize a multi-level timeline
to summarize the evolution patterns of news content at varying
scales, facilitating user filtering and querying. For on-site
news which is recorded in real scenes, the characters in the
video may be the focus of the news. Renoust et al. [51]
(Fig. 19(D)) propose a political analysis visualization system
for a large-scale news video archive based on facial tracking.
This system utilizes facial detection and tracking techniques to
construct a political network, aiding users in gaining a deeper
understanding of political interactions and media phenomena
through four levels of abstraction: time segments, networks,
timeline, and facial tracking within the videos. Moreover, in
terms of visualization, this research examines the patterns of
appearances and relationships among politicians in a graph-
based visualization, enabling users to selectively explore indi-
vidual network connections.

18%
Education Video
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Fig. 20. (A) Yadav et al. [74] designed a dynamic timeline to support
nonlinear navigation. (B) Monserrat et al. [81] extracted the concepts in
blackboard-style instructional video. (C) EmoCo [9] analyzed the consistency
and evolution of emotions in presentation video. (D) Wu et al. [49] analyzed
the concordance between verbal and non-verbal in presentation video.

D. Education Video

Education videos contain a wealth of contextualized and
unstructured information. The datasets of education videos
are generally presentation videos [8], [9], [101] and course
videos [74], [79], [81] obtained from internet platforms such
as YouTube and MOOC. The duration of these videos scales
from 10 minutes to 90 minutes. The main purpose of analyzing
these education videos is primarily in swifting knowledge
acquisition and enhancing the quality of online teaching. These
videos typically often have high-definition visuals and audio
components, necessitating a comprehensive analysis encom-
passing textual, auditory, and visual content. In this section,
we further categorize these educational videos into course
videos [73], [102] and presentation videos [9], [101].
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Course video analysis techniques focus primarily on the
instructional content [74], [79], [81] ,and learning behav-
ior analysis [102], [155]–[157]. The instructional content in
course videos often exhibits a monotonous and repetitive
nature, which may lead to reduced student concentration and
diminished patience. Students are required to repetitively seek
out and view specific video segments in order to enhance their
comprehension of the knowledge points. To promote efficient
browsing and learning, some works [47], [79], [81] extract
keywords and keyframes from videos for navigation. Yadav
et al. [74] (Fig. 20(A)) propose a multi-dimensional nonlinear
video navigation tool that utilizes blackboard information and
audio data. Regarding visualization, it employs the dynamic
time-aware word clouds and key point timelines to facilitate
users in precisely locating specific points of interest or key seg-
ments within the video. In order to obtain semantic informa-
tion to navigate, Monserrat et al. [81] (Fig. 20(B)) extract the
concept of geometric shapes, and formulas from blackboard-
style education videos and create a summary image of video
concepts as a navigation interface, enabling users to directly
navigate to corresponding video frames of specific concepts.
Truong et al. [47] utilize principles from cognitive psychology
on how humans perceive, remember, and communicate event
structures to automatically extract a two-level hierarchical
overview of makeup instructional tutorials. They consider
facial elements as high-level events while treating actions as
low-level micro-objects.

Some studies are dedicated to conducting learning behavior
analysis of students while they watch course videos. These
studies [102], [155], [156] devote to gain insights into stu-
dents’ behavioral patterns and learning modalities, with the
aim of evaluating pedagogical effectiveness and uncovering
learning difficulties of the course video, thus facilitating a
comprehensive understanding of students’ learning behaviors
and individual preferences. The VisMOOC [156] analyzed
video clickstream data on MOOC platforms. Based on content-
based views, it displays the time variation of the total number
of each type of click action on the video timeline to help
MOOC instructors analyze user learning behavior. However,
discovering the utilization pattern of a massive number of
videos from learning log data remains a significant challenge.

Presentation videos demand learners to engage in detailed
analysis and exploration, aiming to uncover hidden insights,
such as humor skills or the establishment of emotional
resonance within the presentation. Nonetheless, the dig of
presentation often suffers from a lack of precise definitions
and uniform evaluation criteria, which frequently confuse
novices delving into presentation content. In order to solve
these problems, some works use visual analysis techniques to
help users understand the complexity of presentation videos.
The main analysis contents include language style [8], body
posture [9], [49] and personal emotions Tendency [101].

To learn the expression skills of humor, Dehumor [8] is
designed to analyze the language style of the speaker from
two aspects: (1) the interaction of vocal delivery and script
information with inline annotations. (2) the contextual linking
of concepts conveyed in the presentation with a context-linking
graph. However, this work analyzes video only from audio

data and ignores image information. Some works analyze
image information of gestures and emotions in presentation
expression [9], [49], [101]. EmoCo [9] is proposed to analyze
the consistency and evolution of multimodal emotions in
presentation videos (Fig. 20 (C)). They extract the face and
detect the emotion of the speaker. In order to help users with
multi-level analysis and exploration, this work allows users
to analyze the multimodal sentiment (i.e., the sentiment of
text, audio, and face) in presentation videos from three levels
(video-level, sentence-level, and word-level) for comparative
analysis. In visualization, this work designs a novel Sankey
diagram to express the flow of emotions between different
modalities. Furthermore, Wu et al. [49] (Fig. 20 (D)) analyze
the concordance between verbal and non-verbal information
in a collection of presentation videos. On the basis of this
distilled information, they guide users to explore the video col-
lection from three levels: video collections, video comparison
in time series, and detail of a specific video. They utilize an
innovative glyph to represent the postures in the presentation
videos, along with employing scalable timeline navigation to
facilitate users in conducting interactive exploration at varying
levels of granularity.

VI. DISCUSSION AND OUTLOOK

In this section, we discuss video visualization and visual
analysis from four aspects including scalability, uncertainty
and evaluation, multimodal analysis, and real-time analysis.

Scalability. With the rapid expansion of video data, video
visualization, and visual analysis face significant challenges.
Video data has the characteristics of substantial volume,
redundancy, and complexity. Therefore, visual confusion of-
ten occurs during the visual mapping process. To address
this issue, numerous existing research efforts employ frame
sampling [158] or keyframe extraction [65] during the data
processing stage. In the visual design, visual encoding tech-
niques [101], [159] are widely employed to convey semantic
information in the videos. Selecting appropriate graphic sym-
bols to express video features can effectively minimize visual
clutter and confusion. In the realm of visualization interaction,
various approaches such as filtering, querying, and scaling are
extensively employed to facilitate scalable analysis.

However, the current visual analysis techniques still have
limitations in scalability. Their analytical capabilities limited
to video content of up to two hours (as shown in Fig. 17). This
phenomenon highlights the challenges in visual analysis of
long video content. Additionally, the issue of balancing infor-
mation presentation and visual space utilization remains insuf-
ficiently explored. Within a limited screen scope, determining
the granularity and information density of video content that
best facilitates human exploration remains an open question.
These unresolved challenges also motivated us to undertake
this review study. Future work could explore the development
of more efficient methods for high visual throughput image
representation, abstract representation of semantic information,
and spatiotemporal integrated visual representation, aiming to
compress the high-density pixel information in video data.
Additionally, it might consider progressively expanding the
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presentation of information based on human intent to prevent
overwhelming users at the outset.

Uncertainty and evaluation. Uncertainty in video anal-
ysis typically consists of two aspects: (1) Uncertainty in
algorithms: Current efforts aim to construct a visual analy-
sis system that integrates machine intelligence with human
perceptions. However, machine learning algorithms are often
perceived as a “black box” by developers of visualization tools
and users [116], [117], making the deployment in practical
applications prone to unexpected errors. Currently, there is
a lack of in-depth research on enhancing users’ trust in the
results of video analysis models. To address this issue, interac-
tive analysis and feedback should be introduced to incorporate
human insights into the process of improving model outcomes.

(2) Uncertainty in data: Video data may contain noise,
missing information, redundancy, or errors, which can intro-
duce uncertainty in the analysis and interpretation of video
content. In addition to efforts to repair and enhance uncer-
tain data, visualization techniques can assist in addressing
issues related to low-quality data. For example, conveying
uncertainty information to users through visual representations
such as uncertainty ranges, confidence charts, and fuzzy sets
can facilitate accurate decision-making. Furthermore, visual
analytics techniques can present the key factors and influences
contributing to uncertainty, thereby promoting a deeper under-
standing of the analysis results.

The uncertainty creates challenges for accurately analyzing
and understanding videos. Existing research methods [45],
[108] mainly focus on pre-defined visual analysis of video
information in specific domains, and transform uncertain video
semantic information into specific analysis tasks. However,
we still have the opportunity to explore personalized and cus-
tomized exploration mechanisms to deal with more uncertain-
ties. For example, the ability to analyze semantic uncertainty
in videos can be further improved by employing methods such
as gesture-based video information retrieval and context-based
pattern mining.

Additionally, effective evaluation methods can help in un-
derstanding and quantifying these uncertainties, which con-
tributes to the enhancement of the effectiveness and credibility
of video visual analysis techniques. The comparative analysis
in Fig. 2 reveals that little research regarding the performance
evaluation of algorithms, reflecting the evaluation of video
visualization techniques focuses on the effectiveness of the
human-centered analysis process rather than the performance
of quantitative metrics. Furthermore, since the algorithms used
in video visualization techniques are often closely related to
their application contexts, it becomes particularly challenging
to establish a universal standard or metric to measure the
performance of different algorithms.

Multimodal analysis. Multimodal data analysis has
emerged as a prominent research topic in the field of video
analysis [160], [161]. In existing work, semantic-level align-
ment and fusion of multimodal data constitute the primary
methods employed for multimodal data processing. Such as
integrating information from different modalities onto a com-
mon attribute dimension for alignment [9], or directly utilizing
multimodal models for event or object recognition. Regarding

visualization, prior research has presented simultaneous visual
representations of diverse modalities, employing distinct visual
symbols to depict the characteristics of each modality [7].
Futhermore, visualization forms such as Sankey diagrams and
association graphs have been employed to reveal distinctions
and consistencies among modalities.

Additionally, with the emergence of large language mod-
els such as ChatGPT [162], the field of computer vision
and multimodal analysis has experienced significant advance-
ments [163], [164]. These large models incorporate robust se-
mantic understanding and expressive capabilities which brings
opportunities for the combination of visualization techniques
and automatic vision techniques. Particularly, these techniques
stimulated research on previously challenging tasks [165].
For example, automated models extract high-level semantic
information from videos, while visualization techniques can
show the relationship between questions and answers through
intuitive visual representations to help users better understand
the basis and reasoning of the answers.

Real-time analysis. Current visual analytics [6], [106]
efforts primarily focus on modeling historical video streams,
transforming unstructured video data into structured formats to
facilitate further pattern exploration. In contrast to offline anal-
ysis, analyzing online video streams aims to enable real-time
processing and analysis of video streams, extracting valuable
information for prompt decision-making [1]. However, this is
a challenging task. On one hand, there is a high demand for
real-time model performance. The diversity and complexity of
video data further amplify the challenges associated with al-
gorithm design and optimization. On the other hand, owing to
the dynamic nature of online videos, upcoming video streams
may contain content that is irrelevant to the current analysis
task and filled with unknown variables, rendering predictions
difficult. There is an urgent need to develop methods for
more efficient processing and summarization of dynamic video
stream data. Moreover, effectively presenting vast historical
data, real-time updated data, and their interconnections within
the field of visual analytics requires further research and in-
depth exploration.

VII. CONCLUSION

In this paper, we review the visualization and visual analyt-
ics for video data and provide a comprehensive overview. We
first provide a design space based on the video visualization
process. We then review and classify these papers from two di-
mensions: visual analysis tasks and applications. Specifically,
visual analysis tasks are further divided into five types: video
summarization, video content understanding, video anomaly
detection, video editing, and video enhancement. The applica-
tion scenarios are divided into the following four categories:
surveillance, sports, entertainment, and education. In addition,
our paper discusses the challenges and future research trends.
This survey aims to provide insights to practitioners in this
research direction and to help them better understand the role
of visualization techniques in the process of exploring and
analyzing video data.
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